分析 首先求出定積分對(duì)應(yīng)的函數(shù),然后等價(jià)變形,利用正弦函數(shù)的有界性求最值.
解答 解:${∫}_{0}^{α}$(cosx-sinx)dx=(sinx+cosx)|${\;}_{0}^{α}$=sinα+cosα-1=$\sqrt{2}$sin($α+\frac{π}{4}$)-1;
α∈(0,$\frac{π}{2}$],所以$α+\frac{π}{4}∈(\frac{π}{4},\frac{3π}{4})$,
所以當(dāng)$α+\frac{π}{4}$=$\frac{π}{2}$,即$α=\frac{π}{4}$時(shí),$\sqrt{2}$sin($α+\frac{π}{4}$)-1取最大值為$\sqrt{2}-1$;
點(diǎn)評(píng) 本題考查了定積分的計(jì)算以及三角函數(shù)的值域求法;關(guān)鍵是正確求出定積分對(duì)應(yīng)的函數(shù),然后利用三角函數(shù)的有界性求最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\frac{3}{2}$ | C. | 1 | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com