1.已知a∈R,則“a<1”是“|x-2|+|x|>a恒成立”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

分析 要判斷“a<1”是“|x-2|+|x|>a恒成立”的條件,我們可先構(gòu)造函數(shù)y=|x-2|+|x|并求出函數(shù)的值域,然后轉(zhuǎn)化為一個(gè)恒成立的判斷與性質(zhì)問題,最后結(jié)合充要條件的定義,進(jìn)行判斷.

解答 解:函數(shù)y=|x-2|+|x|的值域?yàn)閇2,+∞)
則當(dāng)a<1時(shí),|x-2|+|x|>a恒成立
反之若,|x-2|+|x|>a,則說明a小于函數(shù)y=|x-2|+|x|的最小值2恒成立,即a<2
故“a<1”是“|x-2|+|x|>a恒成立”的充分不必要條件
故選:A.

點(diǎn)評(píng) 判斷充要條件的方法是:①若p⇒q為真命題且q⇒p為假命題,則命題p是命題q的充分不必要條件;②若p⇒q為假命題且q⇒p為真命題,則命題p是命題q的必要不充分條件;③若p⇒q為真命題且q⇒p為真命題,則命題p是命題q的充要條件;④若p⇒q為假命題且q⇒p為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在等差數(shù)列{an}中,a4=-2,且al+a2+…+a10=65,則公差d的值是$\frac{17}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.分別求出符合下列要求的不同排法的種數(shù).(用數(shù)字作答)
(1)7人排成一排,甲、乙兩人不相鄰;
(2)從7人中選出4人參加4×100米接力賽,甲、乙兩人都必須參加,但甲不跑第一棒,乙不跑第四棒.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.集合A={x|x2-2x-8≤0},B={x|2x<8},則A∩B=(  )
A.(-∞,2]B.[-2,3)C.[-4,3)D.(-∞,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知圓x2+y2=4的兩弦AB,CD交于點(diǎn)P($\frac{\sqrt{5}-1}{2}$,$\frac{\sqrt{5}+1}{2}$),且$\overrightarrow{AB}$$•\overrightarrow{CD}$=0,則|$\overrightarrow{AD}$$+\overrightarrow{CB}$|的值為2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某建筑工地在施工過程中,為了保護(hù)一口直徑為1米的圓形古井M,決定將其圍起來,工地上現(xiàn)有一塊長為2米(寬為1.2米)的木工板AB可利用,現(xiàn)將其圍成高1.2米的圍擋,如圖,圓M與AB,PA,PB(PA,PB為另外兩側(cè)的圍擋)均相切.
(1)若PA=PB,計(jì)算△PAB的面積;
(2)問:至少還需要添置多長的木工板.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F1且與x軸垂直的直線交橢圓于A、B兩點(diǎn),直線AF2與橢圓的另一個(gè)交點(diǎn)為C,若△ABF2的面積是△BCF2的面積的2倍,則橢圓的離心率為( 。
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{10}}{5}$D.$\frac{3\sqrt{3}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.計(jì)算:${∫}_{1}^{2}$($\frac{1}{x}$+$\frac{1}{{x}^{2}}$)dx=$\frac{1}{2}$+ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.與非零向量$\overrightarrow{a}$平行的向量中,不相等的單位向量有一個(gè)或兩個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案