17.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤1}\\{\frac{2}{x},x>1}\end{array}\right.$,則f(f(3))=$\frac{13}{9}$,方程f(f(x))=$\frac{1}{4}$的解集為-$\sqrt{7}$.

分析 根據(jù)已知中函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤1}\\{\frac{2}{x},x>1}\end{array}\right.$,將x=3代入可得f(f(3)),再由f(f(x))=$\frac{1}{4}$,可求出滿足條件的x值.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤1}\\{\frac{2}{x},x>1}\end{array}\right.$,
∴f(f(3))=f($\frac{2}{3}$)=$\frac{13}{9}$,
∵f(f(x))=$\frac{1}{4}$<2,
∴f(x)>1,
則$\frac{2}{f(x)}=\frac{1}{4}$,
故f(x)=8,
∵f(x)=8>2,
故x≤1,
故x2+1=8,
解得:x=-$\sqrt{7}$
故答案為:$\frac{13}{9}$,{-$\sqrt{7}$}

點(diǎn)評 本題考查的知識點(diǎn)是分段函數(shù)的應(yīng)用,函數(shù)求值,分類討論思想,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,△ABC的內(nèi)切圓I與邊AB、AC分別切于點(diǎn)D、E,O為△BCI的外心.證明:∠ODB=∠OEC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)的定義域?yàn)椋?,+∞),并且滿足三個條件:①對任意的x,y∈R+,都有f(x+y)=f(x)f(y);②對任意的x∈R+,都有0<f(x)<1;③f(2)=$\frac{1}{4}$.
(Ⅰ)求f(1),f(3)的值;
(Ⅱ)證明:函數(shù)f(x)為區(qū)間(0,+∞)上的減函數(shù);
(Ⅲ)解不等式:f(2x)<$\frac{1}{32}$f(-x2+6x-8).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.對任意非零實(shí)數(shù)a,b,定義a?b的算法原理如程序框圖所示.設(shè)a為函數(shù)y=x2-2x+3(x∈R)的最小值,b為拋物線y2=8x的焦點(diǎn)到準(zhǔn)線的距離,則計算機(jī)執(zhí)行該運(yùn)算后輸出結(jié)果是( 。
A.$\frac{2}{3}$B.$\frac{3}{2}$C.$\frac{7}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列推理錯誤的是(  )
A.A∈l,A∈α,B∈l,B∈α⇒l?αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=AB
C.l?α,A∈l⇒A∉αD.A∈l,l?α⇒A∈α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知雙曲線$\frac{{x}^{2}}{m}$-y2=1(m>0)的離心率為$\frac{2\sqrt{3}}{3}$,則m的值為(  )
A.$\frac{2\sqrt{3}}{3}$B.3C.8D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知田徑隊有男運(yùn)動員36人,女運(yùn)動員24人,若用分層抽樣的方法從該隊的全體運(yùn)動員中抽取一個容量為20的樣本,則抽取男運(yùn)動員的人數(shù)為( 。
A.9B.12C.15D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.定義:若對定義域D內(nèi)的任意兩個x1,x2(x1≠x2),均有|f(x1)-f(x2)|<|x1-x2|成立,則稱函數(shù)y=f(x)是D上的“平緩函數(shù)”.則以下說法正確的有(  )
①f(x)=-lnx+x為(0,+∞)上的“平緩函數(shù)”
②g(x)=sinx為R上的“平緩函數(shù)”
③h(x)=x2-x是為R上的“平緩函數(shù)”
④已知函數(shù)y=k(x)為R上的“平緩函數(shù)”,若數(shù)列{an}對?n∈N*總有|xn+1-xn|≤$\frac{1}{(2n+1)^{2}}$,則k(xn+1)-k(x1)<$\frac{1}{4}$.
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知冪函數(shù)f(x)的圖象經(jīng)過點(diǎn)($\sqrt{3}$,3),則f(2)的值是( 。
A.4B.2C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案