19.函數(shù)$f(x)=\frac{{|{2-x}|}}{{\sqrt{x+2}}}-{(x-\frac{3}{2})^0}$的定義域是( 。
A.$(-2,\frac{3}{2})∪(\frac{3}{2},+∞)$B.$(-2,\frac{3}{2})$C.$(\frac{3}{2},+∞)$D.(-2,+∞)

分析 由分母中根式內(nèi)部的代數(shù)式大于0,0指數(shù)冪的底數(shù)不為0聯(lián)立不等式組得答案.

解答 解:由$\left\{\begin{array}{l}{x+2>0}\\{x-\frac{3}{2}≠0}\end{array}\right.$,得x>-2且x$≠\frac{3}{2}$.
∴函數(shù)$f(x)=\frac{{|{2-x}|}}{{\sqrt{x+2}}}-{(x-\frac{3}{2})^0}$的定義域是$(-2,\frac{3}{2})∪(\frac{3}{2},+∞)$.
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)的定義域及其求法,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.不等式x2(x+1)(x-2)<0的解集為( 。
A.(-1,2)B.(-2,1)C.(-1,0)∪(0,2)D.空集

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,且${a_1}=1,{S_{n+1}}=3{S_n}+n+1,n∈{N^*}$.
(Ⅰ)求證:數(shù)列$\left\{{{a_n}+\frac{1}{2}}\right\}$是等比數(shù)列;
(Ⅱ)若bn=$\frac{n}{{a}_{n+1}-{a}_{n}}$,設(shè)數(shù)列{bn}的前n項(xiàng)和Tn,n∈N*,證明:Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d>0,且第2項(xiàng)、第5項(xiàng)、第14項(xiàng)分別是等比數(shù)列{bn}的第2項(xiàng)、第3項(xiàng)、第4項(xiàng).
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}對(duì)任意的n∈N*,均有$\frac{c_1}{b_1}+\frac{c_2}{b_2}+…+\frac{c_n}{b_n}={a_{n+1}}$成立,求數(shù)列$\{\frac{1}{{{{log}_3}{c_{2n}}.{{log}_3}{c_{2n+2}}}}\}$的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)A={y|y=x2+1,x∈R},$B=\left\{{x\left|y\right.=\left.{\sqrt{x-3}}\right\}}\right.$,則A∩B=[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{4}x,x>0}\\{{2}^{-x},x≤0}\end{array}\right.$,則f(f(-4))+f(log2$\frac{1}{6}$)=(  )
A.$\frac{1}{2}$B.3C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知A={x|y=$\frac{1}{\sqrt{2x-3}}$},B={y|y=2x+3},C={k|y=$\frac{k-1}{x}$}在(0,+∞)上為增函數(shù)}.
(1)求集合 A,B,C;
(2)求集合A∩(∁RB),C∪(∁RB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知α∈(0,$\frac{π}{2}$),且tan(α+$\frac{π}{4}$)=3,則lg(8sinα+6cosα)-lg(4sinα-cosα)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.過(guò)點(diǎn)(4,-2),傾斜角為120°的直線方程是( 。
A.$\sqrt{3}$x+y+2-4$\sqrt{3}$=0B.$\sqrt{3}$x+3y+6+4$\sqrt{3}$=0C.x+$\sqrt{3}$y-2$\sqrt{3}$-4=0D.x+$\sqrt{3}$y+2$\sqrt{3}$-4=0

查看答案和解析>>

同步練習(xí)冊(cè)答案