16.已知$\overrightarrow{OA}=(1,1)$,$\overrightarrow{OB}=(-1,2)$,以$\overrightarrow{OA}$、$\overrightarrow{OB}$為邊作平行四邊形OACB,則$\overrightarrow{OC}$與$\overrightarrow{AB}$的夾角的余弦為$\frac{\sqrt{5}}{5}$.

分析 由已知向量的坐標求出$\overrightarrow{OC}$與$\overrightarrow{AB}$的坐標,代入數(shù)量積求夾角公式得答案.

解答 解:∵$\overrightarrow{OA}=(1,1)$,$\overrightarrow{OB}=(-1,2)$,
∴$\overrightarrow{OC}=\overrightarrow{OA}+\overrightarrow{OB}=(0,3)$,$\overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}=(-2,1)$,
則$\overrightarrow{OC}•\overrightarrow{AB}$=3,$|\overrightarrow{OC}|=3,|\overrightarrow{AB}|=\sqrt{5}$.
則$cos<\overrightarrow{OC},\overrightarrow{AB}>=\frac{\overrightarrow{OC}•\overrightarrow{AB}}{|\overrightarrow{OC}||\overrightarrow{AB}|}$=$\frac{3}{3×\sqrt{5}}=\frac{\sqrt{5}}{5}$.
故答案為:$\frac{{\sqrt{5}}}{5}$.

點評 本題考查平面向量的數(shù)量積運算,考查了數(shù)量積的坐標表示,是基礎(chǔ)的計算題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

6.若關(guān)于x的不等式x2-4x≥m對任意x∈(0,1]恒成立,則m的取值范圍是(-∞,-3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,在四面體PABC 中,面PAB,PBC,PAC兩兩垂直.
(1)求證:BC⊥AP
(2)若PA=a,PB=b,PC=c,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=loga(a2x+t)其中a>0且a≠1.
(1)當a=2時,若f(x)<x無解,求t的范圍;
(2)若存在實數(shù)m,n(m<n),使得x∈[m,n]時,函數(shù)f(x)的值域都也為[m,n],求t的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知a,b,c滿足$\frac{a}{3}$+$\frac{2}$+c=0,f(x)=ax2+bx+c
(1)如果a≠0,證明af($\frac{1}{2}$)<0;
(2)如果a=0,試判別方程f(x)=0在(0,1)內(nèi)是否有解,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.使函數(shù)y=3-2cosx取得最小值時的x的集合為( 。
A.{x|x=2kπ+π,k∈Z}B.{x|x=2kπ,k∈Z}C.$\{\left.x\right|x=2kπ+\frac{π}{2},k∈Z\}$D.$\{\left.x\right|x=2kπ-\frac{π}{2},k∈Z\}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設函數(shù)$f(x)=m-\frac{2}{{{2^x}+1}}$,m∈R
(1)若f(x)為奇函數(shù),求常數(shù)m的值;
(2)用函數(shù)單調(diào)性定義證明:f(x)在R上為增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.定義在R上的函數(shù)f(x)滿足f(1-x)=f(x+1),f(x+1)=-f(x),且在[0,1]上單調(diào)遞減,則( 。
A.f($\frac{7}{2}$)<f($\frac{7}{3}$)<f($\frac{7}{5}$)B.f($\frac{7}{5}$)<f($\frac{7}{2}$)<f($\frac{7}{3}$)C.f($\frac{7}{3}$)<f($\frac{7}{2}$)<f($\frac{7}{5}$)D.f($\frac{7}{5}$)<f($\frac{7}{3}$)<f($\frac{7}{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.直線y=2x+1與雙曲線$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{8}$=1的公共點的個數(shù)為( 。
A.0B.1C.2D.4

查看答案和解析>>

同步練習冊答案