2.已知關(guān)于x的不等式2x2-2mx+m<0的解集為A,若集合A中恰好有兩個(gè)整數(shù),則實(shí)數(shù)m的取值范圍是($\frac{8}{3}$,$\frac{18}{5}$].

分析 由判別式大于0求得m>2,再由A中恰有兩個(gè)整數(shù),得$\sqrt{{m}^{2}-2m}$≤3,得到對(duì)稱軸的范圍,結(jié)合二次函數(shù)的性質(zhì)得出關(guān)于m的不等式,求出m的取值范圍即可.

解答 解:由題意可得,判別式△=4m2-8m>0,解得m<0(舍),或 m>2.
設(shè)A=(a,b),由于集合A中恰有兩個(gè)整數(shù)則有|b-a|≤3,
即|$\frac{m+\sqrt{{m}^{2}-2m}}{2}-\frac{m-\sqrt{{m}^{2}-2m}}{2}$|=$\sqrt{{m}^{2}-2m}$≤3,
即m2-2m≤9,解得 2<m≤1+$\sqrt{10}$.
故有對(duì)稱軸1<$\frac{m}{2}$≤$\frac{1+\sqrt{10}}{2}$$<\frac{5}{2}$,
令f(x)=2x2-2mx+m,
而f(4)=32-7m>0,f(0)=m>0,f(1)=2-m<0,
故A中的兩個(gè)整數(shù)為1和2,∴f(2)<0,f(3)≥0.
即$\left\{\begin{array}{l}{8-3m<0}\\{18-5m≥0}\end{array}\right.$,解得$\frac{8}{3}<m≤\frac{18}{5}$.
∴實(shí)數(shù)m的取值范圍是($\frac{8}{3}$,$\frac{18}{5}$].
故答案為:($\frac{8}{3}$,$\frac{18}{5}$].

點(diǎn)評(píng) 本題考查了一元二次不等式的解法與應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知α、β是兩個(gè)不同的平面,m、n是兩條不同的直線,下列命題中正確的是( 。
A.若α∥β,m⊥n,m⊥α,則n∥βB.若α⊥β,m∥n,m⊥β,則n?α
C.若n⊥α,m⊥α,則m∥nD.若α⊥β,n∥α,m⊥β,則m⊥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知角α的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊為x軸正半軸,終邊落在第二象限,A(x,y)是其終邊上一點(diǎn),向量$\overrightarrow{m}$=(3,4),若$\overrightarrow{m}$⊥$\overrightarrow{OA}$,則tan(α+$\frac{π}{4}}$)=( 。
A.7B.$-\frac{1}{7}$C.-7D.$\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)p:1<x<2,q:lnx<1,則p是q成立的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在面積為$\sqrt{15}$的△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且c+bsinAtanB=4a+bcosA,sinA=2sinC,則a+c=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知點(diǎn)M(1,0)及雙曲線$\frac{{x}^{2}}{3}$-y2=1的右支上兩動(dòng)點(diǎn)A,B,當(dāng)∠AMB最大時(shí),它的余弦值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若直線x=$\frac{π}{3}$是函數(shù)y=sin(2x+φ)(其中|φ|<$\frac{π}{2}$)的圖象的一條對(duì)稱軸,則φ的值為-$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.要得到函數(shù)y=2sin2x的圖象,只需將y=$\sqrt{3}$sin2x-2sin2x+1的圖象( 。
A.向右平移$\frac{π}{12}$個(gè)單位B.向左平移$\frac{π}{12}$個(gè)單位
C.向右平移$\frac{π}{6}$個(gè)單位D.向左平移$\frac{π}{6}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若a為實(shí)數(shù),命題“任意x∈[0,4],x2-2a-8≤0”為真命題的一個(gè)充分不必要條件可以是( 。
A.a≥8B.a<8C.a≥4D.a<4

查看答案和解析>>

同步練習(xí)冊(cè)答案