8.下列說法正確的是( 。
A.命題“若sinx=siny,則x=y”的逆否命題為真命題
B.“x=-1”是“x2-5x-6=0”的必要不充分條件
C.命題“?x∈R,x2+x+1<0”的否定是“?x∈R,x2+x+1<0”
D.命題“若x2=1,則x=1”的否命題為“若x2≠1,則x≠1”

分析 利用四種命題的逆否關(guān)系判斷AD的正誤;充要條件判斷B的正誤,命題的否定判斷C的正誤.

解答 解:命題“若sinx=siny,則x=y”,命題不成立,則它的逆否命題為假命題,所以A不正確.
“x=-1”是“x2-5x-6=0”的充分不必要條件,所以B不正確;
命題“?x∈R,x2+x+1<0”的否定是“?x∈R,x2+x+1<0”,不滿足命題的否定形式,所以C不正確.
命題“若x2=1,則x=1”的否命題為“若x2≠1,則x≠1”,滿足命題的否命題的形式,所以D正確.
故選:D.

點(diǎn)評 本題考查四種命題的逆否關(guān)系,充要條件的判斷,命題的否定的判斷,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)函數(shù)f(x)在x=1處可導(dǎo),則$\lim_{△x→0}\frac{f(1+△x)-f(1)}{-2△x}$等于(  )
A.f'(1)B.$-\frac{1}{2}f'(1)$C.-2f'(1)D.-f'(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知直線4x+3y-35=0與圓心在原點(diǎn)的圓C相切,則圓C的方程為x2+y2=49.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={1,2},B={x|ax-2=0},若B⊆A,則實(shí)數(shù)a的所有可能值構(gòu)成的集合為( 。
A.{1,$\frac{1}{2}$}B.{1,2}C.{0,1,2}D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)函數(shù)f(x)=cos$\frac{π}{3}$x,則f(1)+f(2)+f(3)+…+f(2 015)+f(2 016)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)命題p:實(shí)數(shù)x滿足x2-4ax+3a2<0,其中a<0;命題q:實(shí)數(shù)x滿足|2x+7|<5,且?p是?q的必要不充分條件,則實(shí)數(shù)a的取值范圍為[-2,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.為了增強(qiáng)環(huán)保意識,我校從男生中隨機(jī)抽取了60人,從女生中隨機(jī)抽取了50人參加環(huán)保知識測試,統(tǒng)計(jì)數(shù)據(jù)如下表所示:
優(yōu)秀非優(yōu)秀總計(jì)
男生402060
女生203050
總計(jì)6050110
(Ⅰ)試判斷是否有99%的把握認(rèn)為環(huán)保知識是否優(yōu)秀與性別有關(guān);
(Ⅱ)為參加市里舉辦的環(huán)保知識競賽,學(xué)校舉辦預(yù)選賽,已知在環(huán)保測試中優(yōu)秀的同學(xué)通過預(yù)選賽的概率為$\frac{2}{3}$,現(xiàn)在環(huán)保測試中優(yōu)秀的同學(xué)中選3人參加預(yù)選賽,若隨機(jī)變量X表示這3人中通過預(yù)選賽的人數(shù),求X的分布列與數(shù)學(xué)期望.
附:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.5000.4000.1000.0100.001
k0.4550.7082.7066.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖所示,要測量河對岸一電視塔的高PC,在河旁取A、B兩點(diǎn),測得AB=100$\sqrt{3}$米,∠CAB=∠ABC=60°,PB與地面所成的角為30°.
(1)求電視塔的高PC;
(2)求異面直線PB與AC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.式子($\sqrt{10}$)${\;}^{2-2lg\frac{4}{5}}$+2${\;}^{lo{g}_{4}(1-\sqrt{3})^{2}}$=$\sqrt{3}$+$\frac{23}{2}$.

查看答案和解析>>

同步練習(xí)冊答案