17.給出下列四個命題:
(1)如果平面α內(nèi)有一條直線垂直于平面β內(nèi)的一條直線,則α⊥β;
(2)如果平面α內(nèi)有一條直線垂直于平面β內(nèi)的兩條直線,則α⊥β;
(3)如果平面α內(nèi)的一直線垂直于平面β內(nèi)的兩條相交直線,則α⊥β;     
(4)若m⊥α,m⊥β.則α⊥β.其中正確的是(3)(填序號)

分析 直接利用空間中點(diǎn)線面的位置關(guān)系逐一核對四個命題得答案.

解答 解:(1)如果平面α內(nèi)有一條直線垂直于平面β內(nèi)的一條直線,則α⊥β,錯誤,如圖:
(2)如果平面α內(nèi)有一條直線垂直于平面β內(nèi)的兩條直線,則α⊥β,錯誤,如右圖:
(3)由面面垂直的判定定理可知,如果平面α內(nèi)的一直線垂直于平面β內(nèi)的兩條相交直線,則α⊥β,(3)正確;     
(4)若m⊥α,m⊥β.則α∥β,(4)錯誤.
故答案為:(3).

點(diǎn)評 本題考查命題的真假判斷與應(yīng)用,考查了空間中點(diǎn)線面的位置關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知直線L斜率為-3,在y軸上的截距為7,則直線l的方程為y=-3x+7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.為了讓貧困地區(qū)的孩子們過一個溫暖的冬天,某校陽光志愿者社團(tuán)組織“這個冬天不再冷”冬衣募捐活動,共有50名志愿者參與.志愿者的工作內(nèi)容有兩類:1.到各班做宣傳,倡議同學(xué)們積極捐獻(xiàn)冬衣;2.整理、打包募捐上來的衣物.每位志愿者根據(jù)自身實(shí)際情況,只參與其中的某一項(xiàng)工作.相關(guān)統(tǒng)計數(shù)據(jù)如下表所示:
到班級宣傳整理、打包衣物總計
男生121224
女生81826
總計203050
(Ⅰ)據(jù)此統(tǒng)計,你是否認(rèn)為志愿者對工作的選擇與其性別有關(guān)?
(Ⅱ)用分層抽樣的方法在從參與整理、打包衣物工作的志愿者中抽取5人,再從這5人中選2人.那么至少有一人是女生的概率是多少?
參考公式:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$.

P(X2≥k00.100.050.0100.005
k02.7063.8416.6357.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.以下四個命題中正確的個數(shù)是1.
①命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”;
②函數(shù)f(x)=$\frac{1}{x}$在其定義域上為減函數(shù);
③存在正實(shí)數(shù)a,b,使得lg(a+b)=lga+lgb;
④在△ABC中,A<B是sinA<sinB的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖所示,四棱錐P-ABCD的底面是邊長為a的正方形,側(cè)棱PA⊥底面ABCD,側(cè)面PBC內(nèi)有BE⊥PC于E,
(1)求證:PC⊥面BED.
(2)若BE=$\frac{1}{3}$a,試在AB上找一點(diǎn)F,使EF∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)f(x)=|1-x2|,若-1<a<0,b>1且f(a)=f(b),則$\frac{a-1}$的取值范圍( 。
A.(-$\sqrt{2}$,-1)B.(-∞,-$\frac{1}{2}$)C.(-$\sqrt{2}$,-$\frac{1}{2}$)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.用語言敘述:
(1)怎樣由函數(shù)y=f(x)的圖象得到f(2x)的圖象?
(2)怎樣由y=2x的圖象得到y(tǒng)=log2(x+1)的圖象?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.從6名學(xué)生中選出2名學(xué)生擔(dān)任數(shù)學(xué)、物理課代表的選法有( 。
A.10種B.15種C.30種D.45種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,PA⊥面ABCD,AB⊥AD,BC∥AD,AP=$\sqrt{2}$,AB=AD=1,BC=2,$\overrightarrow{BE}=\frac{1}{4}\overrightarrow{BC}$.
(I)求證:平面PAC⊥平面PDE
(II)求直線PC與平面PDE所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案