6.下列各式:
(1)lg$\frac{5}{2}$+2lg2-($\frac{1}{2}$)-1=-1;
(2)函數(shù)f(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$是奇函數(shù)且在(-∞,+∞)上為增函數(shù);
(3)已知函數(shù)f(x)=x2+(2-m)x+m2+12為偶函數(shù),則m的值是2;
(4)若f(x)是冪函數(shù),且滿足$\frac{f(4)}{f(2)}$=3,則f($\frac{1}{2}$)=-$\frac{1}{3}$.
其中正確的有(1)(2)(3)(把你認(rèn)為正確的序號全部寫上).

分析 (1)根據(jù)對數(shù)的運(yùn)算法則進(jìn)行化簡即可.
(2)根據(jù)函數(shù)奇偶性和單調(diào)性的定義和性質(zhì)進(jìn)行判斷.
(3)根據(jù)偶函數(shù)的定義進(jìn)行求解即可.
(4)根據(jù)冪函數(shù)的定義進(jìn)行求解即可.

解答 解:(1)lg$\frac{5}{2}$+2lg2-($\frac{1}{2}$)-1=lg($\frac{5}{2}$×4)-2=lg10-2=1-2=-1;故(1)正確,
(2)f(-x)=$\frac{{e}^{-x}-{e}^{x}}{2}$=-$\frac{{e}^{x}-{e}^{-x}}{2}$=-f(x),則函數(shù)f(x)是奇函數(shù),
∵f(x)=$\frac{1}{2}$ex-$\frac{1}{2}$e-x為增函數(shù),故(2)正確;
(3)若f(x)=x2+(2-m)x+m2+12為偶函數(shù),則f(-x)=f(x),
即x2+(2-m)x+m2+12=x2-(2-m)x+m2+12,即2-m=-(2-m),得m=2,故(3)正確;
(4)若f(x)是冪函數(shù),設(shè)f(x)=xα,若滿足$\frac{f(4)}{f(2)}$=3,
則$\frac{{4}^{α}}{{2}^{α}}$=2α=3,則f($\frac{1}{2}$)=$(\frac{1}{2})^{α}=\frac{1}{{2}^{α}}=\frac{1}{3}$.故(4)錯誤,
故正確的命題是(1)(2)(3),
故答案為:(1)(2)(3)

點(diǎn)評 本題主要考查命題的真假判斷,涉及函數(shù)的性質(zhì),知識點(diǎn)較多,綜合性較強(qiáng),難度不大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知全集為R,集合A={x|x2-2x>0},B={x|1<x<3},則∁RB=(-∞,1]∪[3,+∞),A∩B=(2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,已知多面體ABCDEF中,ABCD為菱形,∠ABC=60°,AE⊥平面ABCD,AE∥CF,AB=AE=1,AF⊥BE.
(Ⅰ)求證:平面BAF⊥平面BDE;
(Ⅱ)求二面角B-AF-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c.已知$c-acosB=\frac{2}$.
(Ⅰ)求角A的大;
(Ⅱ)若$b-c=\sqrt{6}$,$a=2\sqrt{3}$,求BC邊上的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列方程可表示圓的是(  )
A.x2+y2+2x+3y+5=0B.x2+y2+2x+3y+6=0C.x2+y2+2x+3y+3=0D.x2+y2+2x+3y+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,在四邊形ABCD中,設(shè)$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AD}=\overrightarrow b$,$\overrightarrow{BC}=\overrightarrow c$,則$\overrightarrow{DC}$=( 。
A.$\overrightarrow a-\overrightarrow b+\overrightarrow c$B.$\overrightarrow b-(\overrightarrow a+\overrightarrow c)$C.$\overrightarrow a+\overrightarrow b+\overrightarrow c$D.$\overrightarrow b-\overrightarrow a+\overrightarrow c$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若函數(shù)f(x)=ax3-2x2在x=-1時取得極值,則f(1)等于( 。
A.-$\frac{10}{3}$B.-$\frac{2}{3}$C.0D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線l與x軸交于點(diǎn)K,點(diǎn)A在C上,若△AFK的面積為4,則|$\overrightarrow{AF}$|=( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an},{bn}滿足:對于任意正整數(shù)n,當(dāng)n≥2時,${a}_{n}^{2}$+bn${a}_{n-1}^{2}$=2n+1.
(1)若bn=(-1)n,求${a}_{1}^{2}$+${a}_{3}^{2}+{a}_{5}^{2}$+…+${a}_{11}^{2}$的值;
(2)若bn=-1,a1=2,且數(shù)列{an}的各項均為正數(shù),
①求數(shù)列{an}的通項公式;
②是否存在k∈N*且k≥2,使得$\sqrt{{a}_{2k-1}{a}_{2k-2}+19}$為數(shù)列{an}中的項?若存在,求出所有滿足條件的k的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案