16.已知全集為R,集合A={x|x2-2x>0},B={x|1<x<3},則∁RB=(-∞,1]∪[3,+∞),A∩B=(2,3).

分析 求出A中不等式的解集確定出A,由B及全集R,求出B的補(bǔ)集,找出A與B的交集即可.

解答 解:由A中不等式變形得:x(x-2)>0,
解得:x<0或x>2,即A=(-∞,0)∪(2,+∞),
∵全集為R,B=(1,3),
∴∁RB=(-∞,1]∪[3,+∞),
則A∩B=(2,3),
故答案為:(-∞,1]∪[3,+∞);(2,3)

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知直線x-2y+5=0與直線2x+my-6=0互相垂直,則m=( 。
A.-1B.$\frac{1}{4}$C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列個(gè)選項(xiàng)中,關(guān)于兩個(gè)變量所具有的相關(guān)關(guān)系描述正確的是( 。
A.圓的面積與半徑具有相關(guān)性B.純凈度與凈化次數(shù)不具有相關(guān)性
C.作物的產(chǎn)量與人的耕耘是負(fù)相關(guān)D.學(xué)習(xí)成績(jī)與學(xué)習(xí)效率是正相關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知首項(xiàng)為1的正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn,若a1+S2=a3
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=log2an+1,求數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)l、m、n為不同的直線,α、β為不同的平面,有如下四個(gè)命題,其中正確命題的個(gè)數(shù)是(  )
①若α⊥β,l⊥α,則l∥β
②若α⊥β,l?α,則l⊥β
③若l⊥m,m⊥n,則l∥n
④若m⊥α,n∥β且α∥β,則m⊥n.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知y=excosx,則( 。
A.y′=-exsinxB.y′=ex-sinxC.y′=$\sqrt{2}$exsin(x+$\frac{π}{4}$)D.y′=$\sqrt{2}$exsin($\frac{π}{4}$-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.某數(shù)學(xué)興趣小組有3名男生和2名女生,從中任選出2名同學(xué)參加數(shù)學(xué)競(jìng)賽,那么對(duì)立的兩個(gè)事件是( 。
A.恰有1名男生與恰有2名女生B.至少有1名男生與全是男生
C.至少有1名男生與至少有1名女生D.至少有1名男生與全是女生

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且b=2csinB.
(1)求角C的大;
(2)若c2=(a-b)2+4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.下列各式:
(1)lg$\frac{5}{2}$+2lg2-($\frac{1}{2}$)-1=-1;
(2)函數(shù)f(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$是奇函數(shù)且在(-∞,+∞)上為增函數(shù);
(3)已知函數(shù)f(x)=x2+(2-m)x+m2+12為偶函數(shù),則m的值是2;
(4)若f(x)是冪函數(shù),且滿足$\frac{f(4)}{f(2)}$=3,則f($\frac{1}{2}$)=-$\frac{1}{3}$.
其中正確的有(1)(2)(3)(把你認(rèn)為正確的序號(hào)全部寫(xiě)上).

查看答案和解析>>

同步練習(xí)冊(cè)答案