1.下列方程可表示圓的是( 。
A.x2+y2+2x+3y+5=0B.x2+y2+2x+3y+6=0C.x2+y2+2x+3y+3=0D.x2+y2+2x+3y+4=0

分析 只需計算D2+E2-4F的正負即可.

解答 解:對于A:4+9-20<0,不表示任何圖象,
對于B:4+9-24<0,不表示任何圖象,
對于C:4+9-12>0,表示圓,
對于D:4+9-16<0,不表示任何圖象,
故選:C.

點評 本題考查了圓的一般方程問題,掌握圓的一般方程,計算D2+E2-4F的正負是解題的關(guān)鍵,本題是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)l、m、n為不同的直線,α、β為不同的平面,有如下四個命題,其中正確命題的個數(shù)是( 。
①若α⊥β,l⊥α,則l∥β
②若α⊥β,l?α,則l⊥β
③若l⊥m,m⊥n,則l∥n
④若m⊥α,n∥β且α∥β,則m⊥n.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若集合M={x|x>2},n={x|1<x≤3},則N∩(∁RM)等于( 。
A.(1,2]B.[-2,2]C.(1,2)D.[2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖給出的是計算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{2014}$的值的一個程序框圖,則判斷框內(nèi)可填入的條件是( 。
A.i≤1006B.i≤1007C.i>1007D.i>1006

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某同學(xué)對函數(shù)f(x)=xsinx進行研究后,得出以下結(jié)論:
①函數(shù)y=f(x)的圖象是軸對稱圖形;
②對任意實數(shù)x,|f(x)|≤|x|均成立;
③函數(shù)y=f(x)的圖象與直線y=x有無窮多個公共點,且任意相鄰兩點的距離相等;
③當(dāng)常數(shù)k滿足|k|>1時,函數(shù)y=(x)的圖象與直線y=kx有且僅有一個公共點.
其中正確結(jié)論的序號是:( 。
A.①②B.①④C.①②③D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.下列各式:
(1)lg$\frac{5}{2}$+2lg2-($\frac{1}{2}$)-1=-1;
(2)函數(shù)f(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$是奇函數(shù)且在(-∞,+∞)上為增函數(shù);
(3)已知函數(shù)f(x)=x2+(2-m)x+m2+12為偶函數(shù),則m的值是2;
(4)若f(x)是冪函數(shù),且滿足$\frac{f(4)}{f(2)}$=3,則f($\frac{1}{2}$)=-$\frac{1}{3}$.
其中正確的有(1)(2)(3)(把你認為正確的序號全部寫上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)f(x)=$\left\{\begin{array}{l}{{2}^{-x}-1,x≤0}\\{{x}^{\frac{1}{2}},x>0}\end{array}\right.$,若x滿足f(x)≥3,則log2($\frac{x+1}{x-1}$)的最大值為log2$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)k∈N+,f:N+→N+滿足:(1)f(x)嚴(yán)格遞增;(2)對任意n∈N+,有f[f(n)]=kn,求證:對任意n∈N+,都有$\frac{2k}{k+1}$n≤f(n)≤$\frac{k+1}{2}$n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x3+ax+8的單調(diào)遞減區(qū)間為(-5,m),求實數(shù)m的值和函數(shù)f(x)的遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案