6.點(diǎn)P(5,0)與圓x2+y2=24的位置關(guān)系是( 。
A.在圓內(nèi)B.在圓外C.在圓上D.不確定

分析 利用兩點(diǎn)間距離公式與圓的半徑比較,推出結(jié)果即可.

解答 解:點(diǎn)P(5,0)與圓x2+y2=24的圓心(0,0)的距離為:5,圓的半徑為2$\sqrt{6}$,
因?yàn)?$>2\sqrt{6}$,可知,點(diǎn)在圓外.
故選:B.

點(diǎn)評(píng) 本題考查點(diǎn)與圓的位置關(guān)系的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若直線y=k(x-3)+4和曲線y=$\sqrt{9-{x^2}}$有且只有一個(gè)交點(diǎn),則實(shí)數(shù)k的取值范圍為$\left\{{\frac{7}{24}}\right\}∪({\frac{2}{3},+∞})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知命題p:x2≥2x+3;命題q:|1-$\frac{x}{2}$|<1.若p是真命題,q是假命題,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在數(shù)列{an}中,已知an≥1,a1=1,且an+1-an=$\frac{2}{{a}_{n+1}+{a}_{n}-1}$(n∈N*).
(1)令bn=(an-$\frac{1}{2}$)2,求證:{bn}為等差數(shù)列;
(2)令cn=(2an-1)2,Sn=$\frac{1}{{c}_{1}{c}_{2}}$+$\frac{1}{{c}_{2}{c}_{3}}$+…+$\frac{1}{{c}_{n}{c}_{n+1}}$,若Sn<k恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.學(xué)習(xí)正切函數(shù)y=tanx后,“數(shù)學(xué)哥”趙文峰同學(xué)在自己的“數(shù)學(xué)寶典”中,對(duì)其性質(zhì)做了系統(tǒng)梳理:①正切函數(shù)是周期函數(shù),最小正周期是π;②正切函數(shù)是奇函數(shù);③函數(shù)的值域是實(shí)數(shù)集R,在定義域內(nèi)無最大值和最小值;④正切函數(shù)不存在單調(diào)遞減區(qū)間;⑤與正切曲線不相交的直線是x=$\frac{π}{2}$+kπ,k∈Z;⑥正切曲線是中心對(duì)稱圖形,其對(duì)稱中心坐標(biāo)是($\frac{kπ}{2}$,0),k∈Z.以上論斷中正確的有( 。
A.3個(gè)B.4個(gè)C.5個(gè)D.6個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知sinα+cosα=$\frac{\sqrt{6}}{2}$,α∈(0,$\frac{π}{4}$),則sin(α-$\frac{π}{3}$)=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知x∈(0,$\frac{π}{2}$),試求y=$\frac{1+2sinxcosx}{2+sinx+cosx}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=cos2x,g(x)=sinx,h(x)=sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$).
(1)判斷函數(shù)H(x)=f(x+$\frac{π}{4}$)+g(x+$\frac{π}{2}$)的奇偶性,并說明理由;
(2)若函數(shù)h(x+$\frac{π}{2}$)和h(x-π)都是奇函數(shù),將滿足條件的ω按從小到大的順序組成一個(gè)數(shù)列{an},求{an}的通項(xiàng)公式;
(3)求實(shí)數(shù)a與正整數(shù)n,使得F(x)=f(x)+a•g(x)在(0,nπ)內(nèi)恰有147個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知向量$\overrightarrow{a}$=(1,-1),$\overrightarrow$=(1,t).若|$\overrightarrow{a}$+$\overrightarrow$|≤2,則t的取值范圍是{1}.

查看答案和解析>>

同步練習(xí)冊(cè)答案