12.若變量x,y滿足約束條件$\left\{\begin{array}{l}2x-y≤0\\ x-3y+5≥0\\ y≥1\end{array}\right.$,則${(\frac{1}{2})^{x+y-2}}$的最大值是( 。
A.12B.8C.6D.4

分析 設(shè)z=x+y-2,作出不等式組對應(yīng)的平面區(qū)域,求出z的最小值即可得到結(jié)論.

解答 解:作出不等式組對應(yīng)的平面區(qū)域,
設(shè)z=x+y-2,
則y=-x+z+2,
平移y=-x+z+2,由圖象知當直線y=-x+z+2經(jīng)過點時,直線的截距最小,此時z最小,
由$\left\{\begin{array}{l}{y=1}\\{x-3y+5=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=-2}\\{y=1}\end{array}\right.$,即A(-2,1),
此時z最小為z=-2+1-2=-3,
此時${(\frac{1}{2})^{x+y-2}}$的最大值為$(\frac{1}{2})^{-3}$=8,
故選:B.

點評 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)條件利用換元法結(jié)合指數(shù)函數(shù)的單調(diào)性的性質(zhì)轉(zhuǎn)化為求z=x+y-2的最小值是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=loga(x-1)+8(a>0且a≠1)的圖象恒過定點P,P在冪函數(shù)f(x)的圖象上,則f(3)=27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知a=log${\;}_{\frac{1}{2}}$5,b=($\frac{1}{3}$)0.3,c=2${\;}^{\frac{1}{5}}$,則( 。
A.a<b<cB.c<b<aC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.關(guān)于x的方程x2-(m+3)x+m+3=0有兩個不相等的正實數(shù)根,則實數(shù)m的取值范圍是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)$f(x)=sin({ωx-\frac{2π}{3}})({ω>0})$在$({\frac{π}{2},\frac{2π}{3}})$上單調(diào)遞增,則ω的取值范圍為$[{\frac{1}{3},\frac{7}{4}}]∪[{\frac{13}{3},\frac{19}{4}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,a、b、x分別是角A、B、C所對的邊,$A=\frac{π}{3}$,$a=\sqrt{3}$,$c=\sqrt{2}$,則△ABC的面積S=$\frac{3+\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.從數(shù)字1,2,3,4,5這5個數(shù)中,隨機抽取2個不同的數(shù),則這兩個數(shù)的和為奇數(shù)的概率是( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求滿足下列條件的實數(shù)a的取值范圍:
(1)若關(guān)于x的不等式|x+2|+|x-3|<a解集非空;
(2)若關(guān)于x的不等式|x+2|+|x-3|≥a恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知不等式|x+2|+|x-2|<18的解集為A.求集合A.

查看答案和解析>>

同步練習(xí)冊答案