3.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-1,x),x∈R.
(1)若$\overrightarrow{a}$∥$\overrightarrow$,求x的值;
(2)若$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|,求x的值.

分析 (1)根據(jù)向量的位置關(guān)系列方程解出x;(2)分別求出|$\overrightarrow{a}$|和$\overrightarrow{a}•\overrightarrow$,列出方程解出.

解答 解:(1)若$\overrightarrow{a}$∥$\overrightarrow$,則x+2=0,解得x=-2.
(2)∵$|\overrightarrow{a}|$=$\sqrt{5}$,$\overrightarrow{a}•\overrightarrow$=-1+2x,∴-1+2x=$\sqrt{5}$,解得x=$\frac{\sqrt{5}+1}{2}$.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,向量的位置與數(shù)量積的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若$\overrightarrow{a}$,$\overrightarrow$是平面內(nèi)的一組基底,且$λ\overrightarrow{a}$+$μ\overrightarrow$=$\overrightarrow{0}$(λ,μ∈R),則( 。
A.$\overrightarrow{a}$=$\overrightarrow{0}$,$\overrightarrow$=$\overrightarrow{0}$B.λ=μ=0C.λ=0,$\overrightarrow$=$\overrightarrow{0}$D.$\overrightarrow{a}$=$\overrightarrow{0}$,μ=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知方程sin(α-3π)=2cos(α-4π),求$\frac{sin(π-α)+5cos(2π-α)}{2sin(\frac{3π}{2}-α)-sin(2π-α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)y=Asin(ωx+φ),在同一周期內(nèi),當(dāng)個(gè)x=$\frac{π}{9}$時(shí)函數(shù)取得最大值2,當(dāng)x=$\frac{4π}{9}$時(shí)取得最小值-2,則該函數(shù)的解析式為(  )
A.y=2sin(3x-$\frac{π}{6}$)B.y=2sin(3x+$\frac{π}{6}$)C.y=2sin($\frac{x}{3}$+$\frac{π}{6}$)D.y=2sin($\frac{x}{3}$-$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)滿(mǎn)足f(x)=cos($\frac{4k-1}{2}$π+α)+cos($\frac{4k+1}{2}$π-α)(k∈Z).
(1)化簡(jiǎn)f(x);
(2)若α為第二象限角,且tan(α-$\frac{2015π}{2}$)=$\frac{1}{2}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知cos(α+$\frac{π}{6}$)=$\frac{3}{5}$,α為銳角.
(1)則cos(2α+$\frac{π}{3}$)=-$\frac{7}{25}$;
(2)若關(guān)于x的方程2cos(2x+α)+1=m在[0,$\frac{π}{2}$]上有且僅有2個(gè)不相等的實(shí)根,則實(shí)數(shù)m的取值范圍是(-1,$\frac{1-3\sqrt{3}}{5}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知{an}是等比數(shù)列,且an>0,a4+a3-a2-a1=5,則a5+a6的最小值為(  )
A.10B.14C.16D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{a}{x-1}$+ax(a>0)在(1,+∞)上的最小值為15,函數(shù)g(x)=|x+a|+|x+1|.
(1)求實(shí)數(shù)a的值;
(2)求函數(shù)g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知全集U={0,1,2,3,4},P={x∈N|-1<x<3},則P的補(bǔ)集∁UP=(  )
A.{4}B.{0,4}C.{3,4}D.{0,3,4}

查看答案和解析>>

同步練習(xí)冊(cè)答案