A. | 2 | B. | $\frac{1}{2}$ | C. | 2$\sqrt{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
分析 利用兩角差的余弦公式將f(x)化簡f(x)═$\sqrt{2}$sin(x+$\frac{π}{4}$)+2-$\sqrt{2}$,根據(jù)等腰三角形關(guān)系,2A+C=π,化簡求得B=$\frac{π}{4}$,代入求得,f(B)=2.
解答 解:f(x)=sinx(1+sin2x)+cosxcos2x+2-$\sqrt{2}$,
=sinx+sinxsin2x+cosxcos2x+2-$\sqrt{2}$,
=cosx+sinx+2-$\sqrt{2}$,
=$\sqrt{2}$sin(x+$\frac{π}{4}$)+2-$\sqrt{2}$,
$\frac{sin(2A+C)}{sinA}=\sqrt{2}-2cosB$,
若△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且滿足a=b,
∴A=B,A+B+C=π,
∴2A+C=π,
$\frac{sin[(A+C)+A]}{sinA}$=0,
∴$\sqrt{2}$-2cosB=0,cosB=$\frac{\sqrt{2}}{2}$,
∴B=$\frac{π}{4}$,
f(B)=f($\frac{π}{4}$)=$\sqrt{2}$+2-$\sqrt{2}$=2,
∴f(B)=2,
故答案選:A.
點評 本題考查兩角差的余弦公式和等腰三角形的性質(zhì),屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 24 | C. | 48 | D. | 120 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分組(歲) | 頻數(shù) |
[25,30) | 5 |
[30,35) | x |
[35,40) | 35 |
[40,45) | y |
[45,50] | 10 |
合計 | 100 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≥3 | B. | a≤3 | C. | a<3 | D. | a>3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com