5.要得到余弦曲線y=cosx,只需將正弦曲線y=sinx向左平移(  )
A.$\frac{π}{2}$個(gè)單位B.$\frac{π}{3}$個(gè)單位C.$\frac{π}{4}$個(gè)單位D.$\frac{π}{6}$個(gè)單位

分析 根據(jù)誘導(dǎo)公式,知cosx=sin(x-$\frac{π}{2}$),所以y=cosx=sin(x-$\frac{π}{2}$),根據(jù)平移變換的規(guī)律,當(dāng)x減去某數(shù)時(shí),圖象向左平移,可以知要得到余弦曲線,只需將正弦曲線向左平移$\frac{π}{2}$個(gè)單位.

解答 解:∵cosx=sin(x-$\frac{π}{2}$)
∴余弦函數(shù)y=cosx的圖象可看作正弦y=sinx圖象向左平移$\frac{π}{2}$個(gè)單位得到.
故選:A

點(diǎn)評(píng) 本題主要考察了利用誘導(dǎo)公式和平移變換規(guī)律來(lái)判斷三角函數(shù)圖象,做題時(shí)記清平移方向,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖給出的是計(jì)算$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+…+\frac{1}{96}$的值的一個(gè)程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是(  )
A.i>48B.i>24C.i<48D.i<24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖所示,程序框圖(算法流程圖)的輸出結(jié)果是( 。
A.-2B.0C.=-1D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)f(x)=log0.8(2x2-ax+3)在(-1,+∞)為減函數(shù),則a的范圍( 。
A.(-5,-4]B.[-5,-4]C.(-∞,-4)D.(-∞,-4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知x=$\frac{π}{6}$是函數(shù)f(x)=sin(2x+φ)(0<φ<$\frac{π}{2}$)圖象的一條
對(duì)稱軸.
(1)求函數(shù)f(x)的解析式;          
(2)求函數(shù)f(-x)的單調(diào)增區(qū)間;
(3)作出函數(shù)f(x)在x∈[0,π]上的圖象簡(jiǎn)圖(列表,畫圖).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在空間直角坐標(biāo)系Oxyz中,若y軸上點(diǎn)M到兩點(diǎn)P(1,0,2),Q(1,-3,1)的距離相等,則點(diǎn)M的坐標(biāo)為( 。
A.(0,1,0)B.(0,-1,0)C.(0,0,3)D.(0,0,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)$\overrightarrow{a}$,$\overrightarrow$為平面向量.若$\overrightarrow{a}$=(1,0),$\overrightarrow$=(3,4),則|$\overrightarrow{a}$|=1,$\overrightarrow{a}$•$\overrightarrow$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知a,b為實(shí)數(shù),則“a+b≤2”是“a≤1且b≤1”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖1,平面五邊形ABCDE中,△ABE是邊長(zhǎng)為2的正三角形,△BCE、△CDE均為等腰直角三角形,且∠BCE和∠CDE為直角,現(xiàn)將△ABE、△CDE分別沿BE、CE折起,使平面ABE⊥平面BCE,平面DCE⊥平面BCE,如圖2所示.
(1)求三棱錐C-BDE的體積;
(2)問(wèn):在BE上是否存在點(diǎn)F,使得平面DCF⊥平面ABE?若存在,求出點(diǎn)F的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案