分析 作出可行域,變形目標(biāo)函數(shù)可得y=2x-Z,平移直線經(jīng)過點A時,目標(biāo)函數(shù)取最大值2,解出A的坐標(biāo)可得m的方程,解方程可得m值.
解答 解:作出約束條件$\left\{\begin{array}{l}{x+y≥0}\\{x-2y+2≥0}\\{mx-y≤0}\end{array}\right.$所對應(yīng)的可行域(如圖陰影),
變形目標(biāo)函數(shù)可得y=2x-Z,平移直線經(jīng)過點A時,目標(biāo)函數(shù)取最大值2,
聯(lián)立$\left\{\begin{array}{l}{x-2y+2=0}\\{mx-y=0}\end{array}\right.$可解得$\left\{\begin{array}{l}{x=\frac{2}{2m-1}}\\{y=\frac{2m}{2m-1}}\end{array}\right.$,即點A($\frac{2}{2m-1}$,$\frac{2m}{2m-1}$),
∴2×$\frac{2}{2m-1}$-$\frac{2m}{2m-1}$=2,解得m=1
故答案為:1
點評 本題考查簡單線性規(guī)劃,準(zhǔn)確作圖是解決問題的關(guān)鍵,屬中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 偶函數(shù) | B. | 奇函數(shù) | C. | 增函數(shù) | D. | 減函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{\frac{6}{5}}$ | B. | $\frac{6}{5}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2)∪(0,2) | B. | (-2,0)∪(0,2) | C. | (-2,0)∪(2,+∞) | D. | (-∞,-2)∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.1685 | B. | 0.1686 | C. | 0.1687 | D. | 0.1688 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 增函數(shù) | B. | 減函數(shù) | C. | 先增后減函數(shù) | D. | 先減后增函數(shù) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com