分析 (1)由a>2x,可得函數(shù)y=x(a-2x)=2•2x(a-2x),運用基本不等式,即可得到最大值;
(2)y=$\frac{1}{a-2x}$-x=$\frac{1}{a-2x}$+$\frac{a-2x}{2}$-$\frac{1}{2}$a,由基本不等式可得最小值.
解答 解:(1)函數(shù)y=x(a-2x)
=2•2x(a-2x)≤2•($\frac{2x+a-2x}{2}$)2=$\frac{{a}^{2}}{2}$,
當(dāng)且僅當(dāng)2x=a-2x,即x=$\frac{a}{4}$時,函數(shù)的最大值為$\frac{1}{2}$a2;
(2)y=$\frac{1}{a-2x}$-x=$\frac{1}{a-2x}$+$\frac{a-2x}{2}$-$\frac{1}{2}$a
≥2$\sqrt{\frac{1}{a-2x}•\frac{a-2x}{2}}$-$\frac{1}{2}$a=$\sqrt{2}$-$\frac{1}{2}$a.
當(dāng)且僅當(dāng)a-2x=$\sqrt{2}$,即x=$\frac{1}{2}$a-$\frac{\sqrt{2}}{2}$時,取得最小值$\sqrt{2}$-$\frac{1}{2}$a.
點評 本題考查函數(shù)的最值的求法,注意運用基本不等式,以及滿足的條件:一正二定三等,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 1 | 2 | 3 | 4 |
y | -1 | -1 | -1 | -1 |
x | 3 | 4 | 5 | 6 |
y | 2 | 3 | 2 | 4 |
x | 1 | 2 | 3 | 4 |
y | 3,4 | 5,6 | 7,8 | 9,10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
上網(wǎng)時間(分鐘) | [30,40) | [40,50) | [50,60) | [60,70) | [70,80] |
人數(shù) | 5 | 25 | 30 | 25 | 15 |
上網(wǎng)時間(分鐘) | [30,40) | [40,50) | [50,60) | [60,70) | [70,80] |
人數(shù) | 10 | 20 | 40 | 20 | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | 0 | D. | 不能確定 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com