3.從3名男同學(xué),2名女同學(xué)中任選2人參加知識(shí)競(jìng)賽,則選到的2名同學(xué)中至少有1名男同學(xué)的概率是$\frac{9}{10}$.

分析 選到的2名同學(xué)中至少有1名男同學(xué)的對(duì)立事件是選到兩名女同學(xué),由此利用對(duì)立事件概率計(jì)算公式能求出選到的2名同學(xué)中至少有1名男同學(xué)的概率.

解答 解:從3名男同學(xué),2名女同學(xué)中任選2人參加知識(shí)競(jìng)賽,
基本事件總數(shù)n=${C}_{5}^{2}$=10,
選到的2名同學(xué)中至少有1名男同學(xué)的對(duì)立事件是選到兩名女同學(xué),
∴選到的2名同學(xué)中至少有1名男同學(xué)的概率:
p=1-$\frac{{C}_{2}^{2}}{{C}_{5}^{2}}$=$\frac{9}{10}$.
故答案為:$\frac{9}{10}$.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意對(duì)立事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知向量$\overrightarrow{p}$=(2sinA,cos(A-B)),$\overrightarrow{q}$=(sinB,-1),且$\overrightarrow{p}$•$\overrightarrow{q}$=$\frac{1}{2}$.
(Ⅰ)求角C的大小;
(Ⅱ)若$c=\sqrt{3}$,求b-a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知拋物線x2=4py(p>0)的焦點(diǎn)F,直線y=x+2與該拋物線交于A,B兩點(diǎn),M是線段AB的中點(diǎn),過M作x軸的垂線,垂足為N,若$\overrightarrow{AF}$•$\overrightarrow{BF}$+($\overrightarrow{AF}$+$\overrightarrow{BF}$)•$\overrightarrow{FN}$=-1-5p2,則p的值為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知a=30.4,b=0.43,c=log0.43,則(  )
A.b<a<cB.c<a<bC.c<b<aD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrowhepezla$為非零向量,且$\overrightarrow{a}$+$\overrightarrow$=$\overrightarrow{c}$,$\overrightarrow{a}$-$\overrightarrow$=$\overrightarrowlxjisuk$,則下列說法正確的個(gè)數(shù)為( 。
(1)若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{c}$•$\overrightarrowd6727p6$=0;
(2)若$\overrightarrow{c}$•$\overrightarrowo2moq2r$=0,則|$\overrightarrow{a}$|=|$\overrightarrow$|;
(3)若|$\overrightarrow{c}$|=|$\overrightarrowarm1pn2$|,則$\overrightarrow{a}$•$\overrightarrow$=0;
(4)若$\overrightarrow{a}$•$\overrightarrow$=0,則|$\overrightarrow{c}$|=|$\overrightarrow2mm22aa$|
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知等比數(shù)列{an}的首項(xiàng)a1=2015,公比為q=$\frac{1}{2}$,記bn=a1a2a3…an,則bn達(dá)到最大值時(shí),n的值為( 。
A.10B.11C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知圓x2+y2=9,直線l:y=x+b,若圓x2+y2=9上恰有2個(gè)點(diǎn)到直線l的距離等于1,則b的取值范圍是-4$\sqrt{2}$<b<-2$\sqrt{2}$或2$\sqrt{2}$<b<4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知集合A={t|t使{x|x2+2tx-4t-3≠0}=R},集合B={t|t使{x|x2+2tx-2t=0}≠∅},其中x,t均為實(shí)數(shù).
(1)求A∩B;
(2)設(shè)m為實(shí)數(shù),g(α)=-sin2α+mcosα-2m,α∈[π,$\frac{3}{2}$π],求M={m|g(α)∈A∩B}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知a>0且a≠1,函數(shù)f(x)=$\left\{\begin{array}{l}{(2-a)x+3a-4,x≤0}\\{{a}^{x},x>0}\end{array}\right.$滿足對(duì)任意實(shí)數(shù)x1≠x2,都有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$>0成立,則a的取值范圍是( 。
A.(1,2)B.[$\frac{5}{3}$,2)C.(1,$\frac{5}{3}$)D.(1,$\frac{5}{3}$]

查看答案和解析>>

同步練習(xí)冊(cè)答案