14.已知拋物線(xiàn)x2=4py(p>0)的焦點(diǎn)F,直線(xiàn)y=x+2與該拋物線(xiàn)交于A,B兩點(diǎn),M是線(xiàn)段AB的中點(diǎn),過(guò)M作x軸的垂線(xiàn),垂足為N,若$\overrightarrow{AF}$•$\overrightarrow{BF}$+($\overrightarrow{AF}$+$\overrightarrow{BF}$)•$\overrightarrow{FN}$=-1-5p2,則p的值為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

分析 設(shè)A(x1,y1),B(x2,y2),把y=x+2代入x2=4py得x2-4px-8p=0.利用韋達(dá)定理,結(jié)合向量的數(shù)量積公式,即可得出結(jié)論.

解答 解:設(shè)A(x1,y1),B(x2,y2),把y=x+2代入x2=4py得x2-4px-8p=0.
由韋達(dá)定理得x1+x2=4p,x1x2=-8p,所以M(2p,2p+2),所以N點(diǎn)(2p,0).
同理y1+y2=4p+4,y1y2=4
∵$\overrightarrow{AF}$•$\overrightarrow{BF}$+($\overrightarrow{AF}$+$\overrightarrow{BF}$)•$\overrightarrow{FN}$=-1-5p2,
∴(-x1,p-y1)•(-x2,p-y2)+(-x1-x2,2p-y1-y2)•(2p,-p)=-1-5p2
代入整理可得4p2+4p-3=0,
∴p=$\frac{1}{2}$.
故選:B.

點(diǎn)評(píng) 本題考查直線(xiàn)與拋物線(xiàn)的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)滿(mǎn)足$f(x)-2f({\frac{1}{x}})=x$,則f(x)=_$-\frac{{x}^{2}+2}{3x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{x-a}$的圖象過(guò)點(diǎn)A(0,-$\frac{3}{2}$),B(3,3).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)判斷函數(shù)f(x)在(2,+∞)上的單調(diào)性,并用單調(diào)性的定義加以證明;
(Ⅲ)若m,n∈(2,+∞)且函數(shù)f(x)在[m,n]上的值域?yàn)閇1,3],求m+n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在△ABC中,已知a=4,B=60°,A=30°,解三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若變量x、y滿(mǎn)足約束條件$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{x-2y+2≥0}\end{array}\right.$,則z=2x-y+1的最小值等于( 。
A.-$\frac{5}{2}$B.-2C.-$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若不等式a≤x2-4x對(duì)任意x∈(0,3]恒成立,則a的取值范圍是a≤-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.將函數(shù)$y=sin(2x+\frac{π}{3})$的圖象向右平移$\frac{π}{4}$個(gè)單位,再向上平移1個(gè)單位,所得函數(shù)圖象對(duì)應(yīng)的解析式為( 。
A.$y=sin(2x+\frac{π}{12})+1$B.$y=sin(2x-\frac{π}{12})+1$C.$y=sin(2x-\frac{π}{6})+1$D.$y=sin(2x+\frac{π}{6})+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.從3名男同學(xué),2名女同學(xué)中任選2人參加知識(shí)競(jìng)賽,則選到的2名同學(xué)中至少有1名男同學(xué)的概率是$\frac{9}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.化簡(jiǎn)下列各式(寫(xiě)出化簡(jiǎn)過(guò)程)
(1)${(ln5)^0}+{(\frac{9}{4})^{0.5}}+\sqrt{{{(1-\sqrt{2})}^2}}-{2^{{{log}_4}2}}$;
(2)lg5•lg20+lg22.

查看答案和解析>>

同步練習(xí)冊(cè)答案