18.用分析法證明:設a,b為實數(shù),求證$\sqrt{{a}^{2}+^{2}}$≥$\frac{\sqrt{2}}{2}$(a+b)

分析 分析法證明不等式,尋找使$\sqrt{{a}^{2}+^{2}}$≥$\frac{\sqrt{2}}{2}$(a+b)成立的充分條件,直到使不等式成立的條件顯然具備為止.

解答 證明:要證$\sqrt{{a}^{2}+^{2}}$≥$\frac{\sqrt{2}}{2}$(a+b),
a+b≤0,顯然成立,
a+b>0時,只要證a2+b2≥$\frac{1}{2}$(a+b)2,
只要證2(a2+b2)≥a2+2ab+b2,
只要證(a-b)2≥0,
顯然成立,故要證的不等式成立.

點評 本題考查不等式的證明,著重考查分析法的應用,考查推理能力,體現(xiàn)了轉化的數(shù)學思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.已知雙曲線C的焦點為F1,F(xiàn)2,點P是雙曲線上任意一點,若雙曲線的離心率為2,且|PF1|=2|PF2|,則cos∠PF2F1=( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知四棱柱ABCD-A1B1C1D1,底面ABCD為菱形,∠ADC=60°,BB1⊥底面ABCD,AA1=AC=4,E是CD的中點,
(1)求證:B1C∥平面AC1E;
(2)求幾何體C1-AECB1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知數(shù)列{an}的前n項和為Sn,且Sn+an=2-$\frac{2}{{2}^{n}}$.
(Ⅰ)求a1,a2,a3,a4;
(Ⅱ)求數(shù)列{an}的通項an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.數(shù)列{an}的通項公式為an=n2-kn,若對一切的n∈N*不等式an≥a3,則實數(shù)k的取值范圍[5,7].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.由曲線x2+y2=2|x|+2|y|圍成的圖形的面積為8+4π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,在直角梯形PBCD中,PB∥DC,DC⊥BC,PB=BC=2CD=2,點A是PB的中點,現(xiàn)沿AD將平面PAD折起,設∠PAB=θ:
(1)當θ為直角時,求異面直線PC與BD所成角的大。
(2)當θ為多少度時,三棱錐P-ABD的體積為$\frac{\sqrt{2}}{6}$:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.用硬紙依據(jù)如圖所示(單位;cm)的平面圖形制作一個幾何體,畫出該幾何體的三視圖并求出其表面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.如果a<b<0,那么下面一定成立的是(  )
A.ac<bcB.a-b>0C.a2>b2D.$\frac{1}{a}$<$\frac{1}$

查看答案和解析>>

同步練習冊答案