11.直線x+2y-2=0與直線3x+ay+b=0之間的距離為$\sqrt{5}$,則實數(shù)b=(  )
A.9B.-21C.9或-21D.3或7

分析 利用相互平行的直線斜率之間的關(guān)系可得a,再利用平行線之間的距離公式即可得出.

解答 解:直線x+2y-2=0與直線3x+ay+b=0之間的距離為$\sqrt{5}$,
∴兩條直線平行,則$-\frac{1}{2}$=-$\frac{3}{a}$,解得a=6.
∴3x+ay+b=0化為:x+2y+$\frac{3}$=0,
∴$\sqrt{5}$=$\frac{|\frac{3}+2|}{\sqrt{{1}^{2}+{2}^{2}}}$,解得b=9或-21.
故選:C.

點評 本題考查了相互平行的直線斜率之間的關(guān)系、平行線之間的距離公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,三棱柱ABC-A1B1C1的棱長都相等,側(cè)棱垂直于底面,點D是棱AB的中點,則直線AC與平面A1DC所成角的正弦值為(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{6}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知二次函數(shù)f(x)=ax2+bx+c的圖象與x軸有兩個交點,它們之間的距離為6,且對稱軸方程為x=1,與y軸的交點坐標(biāo)為(0,8).
(1)求函數(shù)f(x)的解析式;
(2)若點P(x,y)是此二次函數(shù)圖象上任意一點,求u=y2+(x-1)2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{2}{ta{n}^{2}α}}\\{y=\frac{2}{tanα}}\end{array}\right.$(α為參數(shù),α≠$\frac{kπ}{2}$,k∈z),M是C1上的動點,P點滿足$\overrightarrow{OP}$=$\frac{1}{2}$$\overrightarrow{OM}$,點P的軌跡為C2
(1)求曲線C1、C2的普通方程.
(2)以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐際方程是ρsin(θ-$\frac{π}{4}$)+$\sqrt{2}$=0,直線l與曲線C2相交于A、B,求△ABO的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)平面直角坐標(biāo)系中,A(-1,1),B(-1,2),C(-4,1).
(1)求直線BC的一般式方程;
(2)求△ABC的外接圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.從1,2,3,4這四個數(shù)中一次隨機(jī)抽取兩個數(shù),則取出的數(shù)中一個是奇數(shù)一個是偶數(shù)的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知點A(0,-1),B(3,0),C(1,2),平面區(qū)域P是由所有滿足$\overrightarrow{AM}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$(2<λ≤m,2<μ≤n)的點M組成的區(qū)域,若區(qū)域P的面積為16,則m+n的最小值為4+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.現(xiàn)有下列函數(shù):①y=$\frac{{2}^{x}-1}{{2}^{x}+1}$,②y=lg($\sqrt{{x}^{2}+1}$+x),③y=$\frac{\sqrt{1-{x}^{2}}}{|1+x|-x}$,④y=(x-1)$\sqrt{\frac{x+1}{x-1}}$,⑤y=$\left\{\begin{array}{l}{{x}^{2}-1,x>0}\\{-{x}^{2}+1,x<0}\end{array}\right.$其中奇函數(shù)為①②⑤,偶函數(shù)為③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}滿足下列條件,求通項公式:
(1)a1=3,a2=6,an+2=4an+1-4an;
(2)a1=3,a2=6,an+2=2an+1+3an

查看答案和解析>>

同步練習(xí)冊答案