10.如圖,P是⊙O外一點(diǎn),PA是切線,A為切點(diǎn),割線PBC與⊙O相交于點(diǎn)B,C,PC=2PA,D為PC的中點(diǎn),AD的延長線交⊙O于點(diǎn)E.證明:AD•DE=2PB2

分析 利用切割線定理證明DC=2PB,BD=PB,結(jié)合相交弦定理可得AD•DE=2PB2

解答 證明:由切割線定理得PA2=PB•PC.
因為 PC=2PA,D為PC的中點(diǎn),所以DC=2PB,BD=PB.…5分
由相交弦定理得AD•DE=BD•DC,
所以AD•DE=2PB2.…10分.

點(diǎn)評 本題考查與圓有關(guān)的比例線段,考查切割線定理、相交弦定理,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)$f(x)=2sin({ωx-\frac{π}{6}})+1({x∈R})$的圖象的一條對稱軸為x=π,其中ω為常數(shù),且ω∈(1,2),則函數(shù)f(x)的最小正周期為( 。
A.$\frac{3π}{5}$B.$\frac{6π}{5}$C.$\frac{9π}{5}$D.$\frac{12π}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在實(shí)數(shù)集R中定義一種運(yùn)算“*”,對任意a,b∈R,a*b為唯一確定的實(shí)數(shù),且具有性質(zhì):
(Ⅰ)對任意a∈R,a*0=a;
(Ⅱ)對任意Ra,b∈R,a*b=ab+(a*0)+(b*0).
關(guān)于函數(shù)f(x)=(ex)*$\frac{1}{{e}^{x}}$的性質(zhì),有如下說法:①函數(shù)f(x)的最小值為3;②函數(shù)f(x)為偶函數(shù);③函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,0].其中所有正確說法的序號為①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列四個結(jié)論:其中正確結(jié)論的個數(shù)是( 。
①命題“?x∈R,x-lnx>0”的否定是“?x0∈R,x0-lnx0≤0”;
②命題“若x-sinx=0,則x=0”的逆否命題為“若x≠0,則x-sinx≠0”;
③“命題p∨q為真”是“命題p∧q為真”的充分不必要條件;
④若x>0,則x>sinx恒成立.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)函數(shù)f(x)=|$\frac{1}{2}$x+1|+|x|(x∈R)的最小值為a.
(Ⅰ)求a;
(Ⅱ)已知兩個正數(shù)m,n滿足m2+n2=a,求$\frac{1}{m}$+$\frac{1}{n}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow$=(-2,0)若$\overrightarrow{c}$⊥$\overrightarrow$($\overrightarrow{c}$≠$\overrightarrow{0}$),當(dāng)t∈[-$\sqrt{3}$,2]時,|$\overrightarrow{a}$-t$\frac{\overrightarrow{c}}{|\overrightarrow{c}|}$|的取值范圍為[1,$\sqrt{13}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ax+$\frac{x-2}{x+1}$(a>1).
(1)求證:f(x)在(-1,+∞)上是增函數(shù);
(2)求證:f(x)=0沒有負(fù)數(shù)根;
(3)若a=3,求方程f(x)=0的根(精確到0.1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)集合 A={y|y=lnx,x>1},集合B=$\left\{{x\left|{y=\sqrt{4-{x^2}}}\right.}\right\}$,則A∩∁RB=(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)集合M={x∈R|x2+x-6<0},N={x∈R||x-1|≤2}.則M∩N=( 。
A.(-3,-2]B.[-2,-1)C.[-1,2)D.[2,3)

查看答案和解析>>

同步練習(xí)冊答案