16.若指數(shù)函數(shù)y=(2a-1)x在R上為單調(diào)遞減函數(shù),則a的取值范圍是( 。
A.(0,1)B.($\frac{1}{2}$,+∞)C.($\frac{1}{2}$,+1)D.(1,+∞)

分析 由指數(shù)函數(shù)的單調(diào)性和條件列出不等式,求出a的取值范圍.

解答 解:因為y=(2a-1)x在R上為單調(diào)遞減函數(shù),
所以0<2a-1<1,解得$\frac{1}{2}$<a<1,
則a的取值范圍是($\frac{1}{2}$,1),
故選:C.

點評 本題考查指數(shù)函數(shù)的單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)是周期為2的奇函數(shù),當(dāng)x∈[0,1)時,f(x)=lg(x+1),f($\frac{2016}{5}$)+lg18=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知向量$\overrightarrow{a}$=(1,2)與向量$\overrightarrow$=(4,y)垂直,則y=( 。
A.8B.-8C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個頂點與拋物線y2=4x的焦點重合,且雙曲線的離心率等于$\sqrt{5}$,則該雙曲線的方程為(  )
A.$\frac{{x}^{2}}{4}$-y2=1B.x2-$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{5}$-$\frac{{x}^{2}}{4}$=1D.5x2-$\frac{5{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知直線l:y=kx+b,曲線C:x2+y2-2x=0,則“k+b=0”是“直線l與曲線C有公共點”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.直線x=t分別與函數(shù)f(x)=ex+1的圖象及g(x)=2x-1的圖象相交于點A和點B,則|AB|的最小值為( 。
A.2B.3C.4-2ln2D.3-2ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(1,1),$\overrightarrow c$=$\overrightarrow a$+k$\overrightarrow b$,若$\overrightarrow b$⊥$\overrightarrow c$,則實數(shù)k的值等于( 。
A.$-\frac{3}{2}$B.$-\frac{5}{3}$C.$\frac{3}{2}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.拋物線y2=6x的準(zhǔn)線方程是( 。
A.x=3B.x=-3C.x=$\frac{3}{2}$D.x=-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.${(\;{x^2}-\frac{1}{2x}\;)^6}$的展開式中,常數(shù)項等于( 。
A.$-\frac{5}{4}$B.$\frac{5}{4}$C.$-\frac{15}{16}$D.$\frac{15}{16}$

查看答案和解析>>

同步練習(xí)冊答案