3.已知函數(shù)f(x)=$\left\{\begin{array}{l}2{x^3}+3{x^2}+m,0≤x≤1\\ mx+5,x>1.\end{array}$若函數(shù)f(x)的圖象與x軸有且只有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)m的取值范圍是(  )
A.(-1,-2)B.(-2,-3)C.(-2,-4)D.(-5,0)

分析 由分段函數(shù)知,分段討論函數(shù)的單調(diào)性,從而求導(dǎo)可知f(x)在[0,1]上是增函數(shù),從而化為函數(shù)f(x)在[0,1]與(1,+∞)上各有一個(gè)零點(diǎn);從而求實(shí)數(shù)m的取值范圍.

解答 解:當(dāng)0≤x≤1時(shí),
f(x)=2x3+3x2+m,
f′(x)=6x2+6x=6x(x+1)≥0;
故f(x)在[0,1]上是增函數(shù),
故若使函數(shù)f(x)的圖象與x軸有且只有兩個(gè)不同的交點(diǎn),
則函數(shù)f(x)在[0,1]與(1,+∞)上各有一個(gè)零點(diǎn);
故m<0,
故$\left\{\begin{array}{l}{f(0)•f(1)≤0}\\{m+5>0}\end{array}\right.$,
解得,m∈(-5,0);
故選:D.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及分段函數(shù)的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.復(fù)數(shù)z=$\frac{2i-1}{(1-i)^{2}}$=( 。
A.1+$\frac{1}{2}$iB.-1+$\frac{1}{2}$iC.-1-$\frac{1}{2}$iD.1-$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知非零向量$\overrightarrow a$,$\vec b$滿足$|{\overrightarrow a}$|=1且$({\overrightarrow a-\overrightarrow b})•({\overrightarrow a+\overrightarrow b})=\frac{1}{2}$.
(Ⅰ)若$\overrightarrow a•\overrightarrow b=\frac{1}{2}$,求向量$\overrightarrow a$,$\vec b$的夾角;
(Ⅱ)在(Ⅰ)的條件下,求$|{\overrightarrow a-2\overrightarrow b}$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=sinx+cosx,x∈R,則有下列結(jié)論:①此函數(shù)的圖象關(guān)于直線x=-$\frac{π}{4}$對(duì)稱;②此函數(shù)的最大值為$\sqrt{2}$;③此函數(shù)在區(qū)間(-$\frac{π}{4}$,$\frac{π}{4}$)上是增函數(shù);④若角A是△ABC中的最小內(nèi)角,則f(A)的值域?yàn)?(1,\sqrt{2}]$.則其中為真命題的序號(hào)為②③④.(填上你認(rèn)為是真命題的所有序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}的前n項(xiàng)和為Sn=n2,數(shù)列{bn}的前n項(xiàng)和為 Tn=2bn-1.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)求證:$\frac{1}{{{a_2}+{S_1}}}$+$\frac{1}{{a}_{3}+{S}_{2}}$+…+$\frac{1}{{{a_{n+1}}+{S_n}}}$<$\frac{3}{4}$;
(3)若滿足不等式λbn-an+12<0的正整數(shù)n有且僅有3個(gè),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某醫(yī)療研究所為了檢驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計(jì)算得K2≈3.918,經(jīng)查對(duì)臨界值表知P(K2≥3.841)≈0.05.
對(duì)此,四名同學(xué)做出了以下的判斷:
p:有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”
q:若某人未使用該血清,那么他在一年中有95%的可能性得感冒
r:這種血清預(yù)防感冒的有效率為95%
s:這種血清預(yù)防感冒的有效率為5%
則上述結(jié)論中,正確結(jié)論的序號(hào)是p,r..(把你認(rèn)為正確的命題序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P在橢圓C上,且PF2⊥F1F2,|PF1|=$\frac{14}{3}$,|PF2|=$\frac{4}{3}$.
(1)求橢圓C的方程;
(2)若直線l過圓x2+y2+4x-2y=0的圓心M交橢圓于A,B兩點(diǎn),且A,B關(guān)于點(diǎn)M對(duì)稱,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知y=21+ax在R上是減函數(shù),則a的取值范圍是(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)某工廠加工某種零件有三道工序:粗加工、返修加工和精加工.每道工序完成時(shí),都要對(duì)產(chǎn)品進(jìn)行檢驗(yàn).粗加工的合格品進(jìn)入精加工,不合格進(jìn)入返修加工;返修加工的合格品進(jìn)入精加工,不合格品作為廢品
處理;精加工的合格品為成品,不合格品為廢品.用流程圖表示這個(gè)零件的加工過程.
(2)設(shè)計(jì)一個(gè)結(jié)構(gòu)圖,表示《數(shù)學(xué)選修1-2》第二章“推理與證明”的知識(shí)結(jié)構(gòu).

查看答案和解析>>

同步練習(xí)冊(cè)答案