18.已知集合A={x|2x-1>1},集合B={x|log3x<1},則(∁RA)∩B=( 。
A.(-∞,1]B.(-∞,1)C.(0,1]D.(0,1)

分析 分別求出關(guān)于集合A,B中x的范圍,求出A的補(bǔ)集,從而求出其和B的交集.

解答 解:集合A={x|2x-1>1}={x|x>1},
集合B={x|log3x<1}={x|0<x<3},
則∁RA={x|x≤1},
∴(∁RA)∩B=B=(0,1],
故選:C.

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的性質(zhì),考查集合的運(yùn)算,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.關(guān)于x的方程x2-(2a+l)x+a2=0有實(shí)數(shù)根的一個(gè)充分不必要條件是( 。
A.a>1B.a>-2C.a≥-$\frac{1}{4}$D.a≥-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如圖所示,某公園計(jì)劃用鵝卵石鋪成兩條交叉的“健康石道”(線段AD和CE),并在這兩條“健康石道”兩端之間建設(shè)“花卉長(zhǎng)廊”(線段AC和ED),以供市民休閑健身.已鋪設(shè)好的部分BD=20m,ED=10$\sqrt{6}$m,∠BED=45°(△BDE為銳角三角形).由于設(shè)計(jì)要求,未鋪設(shè)好的部分AB和BC的總長(zhǎng)只能為40m,則剩余的“花卉長(zhǎng)廊”(線段AC)最短可以是20m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在△ABC中,角A,B,C所對(duì)的對(duì)邊長(zhǎng)分別為a,b,c,若cos2B+cosB-1=-cosAcosC,則角B的最大值為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若變量x,y滿足約束條件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,且z=2x+y的最大值和最小值分別為m和n,則n-m=(  )
A.-5B.-6C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖所示的幾何體是由棱長(zhǎng)為2cm的正方體ABCD一A1B1C1D1被平面AB1D1所截得的較大部分
(1)求點(diǎn)C到平面AB1D1的距離;
(2)求AC與平面AB1D1所成角的大小(結(jié)果用反三角函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在下列函數(shù)中.值域不是[-$\sqrt{2}$,$\sqrt{2}$]的函數(shù)共有( 。
①y=(sinx)′+(cosx)′②y=(sinx)′+cosx  ③y=sinx+(cosx)′④y=(sinx)′•(cosx)′.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.一個(gè)盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機(jī)抽取50個(gè)作為樣本,稱出它們的重量(單位:克),重量分組區(qū)間為(5,15],(15,25](25,35],(35,45],由此得到樣本的重量頻率分布直方圖,如圖.
(Ⅰ)求a的值;
(Ⅱ)根據(jù)樣本數(shù)據(jù),試估計(jì)盒子中小球重量的平均值;
(Ⅲ)從盒子中隨機(jī)抽取3個(gè)小球,其中重量在(5,15]內(nèi)的小球個(gè)數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望及方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在數(shù)列{an}中,a1=3,an=$\sqrt{{a}_{n-1}+2}$,則( 。
A.數(shù)列{an}單調(diào)遞減B.數(shù)列{an}單調(diào)遞增
C.數(shù)列{an}先遞減后遞增D.數(shù)列{an}先遞增后遞減

查看答案和解析>>

同步練習(xí)冊(cè)答案