10.已知復(fù)數(shù)z滿足(3+4i)z=25,則復(fù)數(shù)z的虛部為-4.

分析 把已知的等式變形,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,則答案可求.

解答 解:∵(3+4i)z=25,
∴z=$\frac{25}{3+4i}$=$\frac{25(3-4i)}{(3-4i)(3+4i)}$=3-4i.
∴復(fù)數(shù)z的虛部為-4.
故答案為:-4.

點(diǎn)評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.總體由編號為01,02,…,29,30的30個個體組成.利用下面的隨機(jī)數(shù)表選取4個個體,選取方法是如下從隨機(jī)數(shù)表第2行的第2列數(shù)字0開始由左到右依次選取兩個數(shù)字,則選出來的第3個個體的編號為20.
78 16 65 72 08  02 63 14 07 02  43 69 69 38 74
32 04 94 23 49  55 80 20 36 35  48 69 97 28 01

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知a,b,c∈R+,求證:
(1)(ab+a+b+1)(ab+ac+bc+c2)≥16abc
(2)$\frac{b+c-a}{a}$+$\frac{c+a-b}$+$\frac{a+b-c}{c}$≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,若sinC+sin(B-A)=sin2A,則△ABC的形狀為( 。
A.等腰三角形B.直角三角形
C.等腰直角三角形D.等腰三角形或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.等差數(shù)列{an}中,S3=6,S6-S3=15,S9=45.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知$\overrightarrow{m}$=(2-sin(2x+$\frac{π}{6}$),-2),$\overrightarrow{n}$=(1,sin2x),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,(x∈[0,$\frac{π}{2}$])
(1)求函數(shù)f(x)的值域;
(2)設(shè)△ABC的內(nèi)角A,B,C的對邊長分別為a,b,c,若f($\frac{B}{2}$)=1,b=1,c=$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知映射f:A→B,其中A=B=R,對應(yīng)法則f:x→y=$\left\{{\begin{array}{l}{{x^2}-2x,x≥0}\\{-{x^2}-2x,x<0}\end{array}}$,實數(shù)k∈B,且k在集合A中只有一個原象,則k的取值范圍是( 。
A.(-∞,-1]∪[1,+∞)B.(-∞,-1)∪(1,+∞)C.(-1,1)D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在長方體ABCD-A1B1CD1表面積為8,則體對角線AC1長度的最小值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知橢圓方程為$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1$,過橢圓上一點(diǎn)P(2,1)作切線交y軸于N,過P的另一條直線交y軸于M,若△PMN是以MN為底邊的等腰三角形,則直線PM的方程為( 。
A.y=$\frac{3}{2}x-2$B.y=$\frac{1}{2}x$C.y=-2x+5D.y=$\frac{2}{3}x-\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案