19.在長(zhǎng)方體ABCD-A1B1CD1表面積為8,則體對(duì)角線AC1長(zhǎng)度的最小值是2.

分析 設(shè)長(zhǎng)方體ABCD-A1B1CD1的長(zhǎng)寬高分別為:a,b,c,則2ab+2ac+2bc=8,利用基本不等式,可得答案.

解答 解:設(shè)長(zhǎng)方體ABCD-A1B1CD1的長(zhǎng)寬高分別為:a,b,c,
則2ab+2ac+2bc=8,
則體對(duì)角線AC1長(zhǎng)度d=$\sqrt{{a}^{2}+^{2}+{c}^{2}}$=$\sqrt{\frac{2({a}^{2}+^{2}+{c}^{2})}{2}}$=$\sqrt{\frac{({a}^{2}+^{2})+({a}^{2}+{c}^{2})+(^{2}+{c}^{2})}{2}}$≥$\sqrt{\frac{2ab+2ac+2bc}{2}}$=2,
故體對(duì)角線AC1長(zhǎng)度的最小值是2,
故答案為:2

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是棱柱的結(jié)構(gòu)特征,基本不等式,是不等式與立體幾何的綜合考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知命題P:A={x|x2-5x+4≤0};命題q:B={x|(x+1)(x-a)<0}
(1)求出A的解集
(2)若p是q的充分不必要條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知復(fù)數(shù)z滿足(3+4i)z=25,則復(fù)數(shù)z的虛部為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.△ABC中D是BC邊上的一個(gè)四等分點(diǎn),AE:EF:FC=2;2:3,已知△DEF的面積為12cm2,那么△ABC的面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=1og2(x+1)-1og2(x-1).
(1)求f(x)的定義域;
(2)寫出f(x)的單調(diào)區(qū)間;
(3)若對(duì)[3,5]上的任意x都有f(x)<2x+m成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若函數(shù)f(x)=1og2(-x2+2ax+3)在區(qū)間[1,2]內(nèi)單調(diào)遞減,則a的取值范圍是($\frac{1}{4}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=lg(-x2+2x+3).
(1)求函數(shù)f(x)的值域;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn)分別為F1、F2,已知線段F1F2被點(diǎn)(b,0)分成3:1的兩段,則此雙曲線的離心率為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{5}}{2}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若x,y>0,且x+2y=1,則(x+$\frac{1}{x}$)(y+$\frac{1}{4y}$)的最小值是( 。
A.$\frac{25}{2}$B.$\frac{25}{4}$C.$\frac{25}{8}$D.$\frac{25}{16}$

查看答案和解析>>

同步練習(xí)冊(cè)答案