A. | $\frac{{2\sqrt{3}}}{3}$ | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\frac{{2\sqrt{6}}}{3}$ |
分析 利用余弦定理求出|MF1||MF2|=9b2,利用點(diǎn)M(3,$\sqrt{2}$)在此雙曲線(xiàn)上,得到$\frac{9}{{a}^{2}}$-$\frac{2}{^{2}}$=1,結(jié)合向量的數(shù)量積公式建立方程關(guān)系求出a,c即可得到結(jié)論.
解答 解:如圖,在△MF1F2中,由余弦定理,
|F1F2|2=|MF1|2+|MF2|2-2|MF1||MF2|cos∠F1MF2,
即4c2=(|MF1|-|MF2|)2+2|MF1||MF2|-2×$\frac{7}{9}$|PF1||PF2|
=4a2+$\frac{4}{9}$|MF1||MF2|,
則$\frac{4}{9}$|MF1||MF2|=4c2-4a2=4b2,
則|MF1||MF2|=9b2,
∵$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=|MF1||MF2|×$\frac{7}{9}$=$\frac{7}{9}$×9b2=7b2,
$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=(-c-3,-$\sqrt{2}$)•(c-3,-$\sqrt{2}$)=-(c2-9)+2=11-c2.
∴11-c2=7b2,
即11-a2-b2=7b2,則a2=11-8b2,
∵M(jìn)(3,$\sqrt{2}$)在此雙曲線(xiàn)上,
∴$\frac{9}{{a}^{2}}$-$\frac{2}{^{2}}$=1,將a2=11-8b2,代入$\frac{9}{{a}^{2}}$-$\frac{2}{^{2}}$=1得$\frac{9}{11-8^{2}}$-$\frac{2}{^{2}}$=1,
整理得4b4+7b2-11=0,
即(b2-1)(4b2+11)=0,
則b2=1,a2=11-8b2=11-8=3,c2=11-7b2=11-7=4,
則a=$\sqrt{3}$,c=2,
則離心率e=$\frac{c}{a}$=$\frac{2}{\sqrt{3}}$=$\frac{{2\sqrt{3}}}{3}$,
故選:A
點(diǎn)評(píng) 本題主要考查雙曲線(xiàn)離心率的計(jì)算,根據(jù)余弦定理以及向量的數(shù)量積公式建立方程關(guān)系是解決本題的關(guān)鍵.綜合性較強(qiáng),運(yùn)算量較大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=x-1 | B. | y=x-$\frac{1}{2}$ | C. | y=2x-1 | D. | y=$\frac{1}{2}x$-$\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
x | 3 | 4 | 5 | 6 |
y | 2.5 | t | 4 | 4.5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com