12.已知一個數(shù)列{an}的各項是1或3,首項是1,且在第k個1和第k+1個1之間有2k-1個3,即1,3,1,3,3,3,1,3,3,3,3,3,1,…,記數(shù)列的前n項的和為Sn
(1)試問第12個1為該數(shù)列的第幾項?
(2)若Sm=2000,試求m的值;
(3)設有定理:若數(shù)列{an}、{bn}、{cn}滿足an≤bn≤cn(n∈N*),且$\underset{lim}{n→∞}$an=$\underset{lim}{n→∞}$cn=A,則$\underset{lim}{n→∞}$bn=A,由上述定理判斷$\underset{lim}{n→∞}$$\frac{{S}_{n}}{n}$是否存在?如果存在,求出該極限的值;如果不存在,請說明理由.

分析 (1)將第k個1與第k+1個1前的3記為第k對,得到前k對共有項數(shù)為2+4+…+2k=k(k+1).由此能求出第12個1為該數(shù)列的第幾項;
(2)由前k對所在全部項的和為Sk(k+1)=k+3[k(k+1)-k]=3k2+k,能推導出S651=1901且自第656項到第702項均為3,而2000-1901=99能被3整除,由此得到存在m=651+33=684,使S684=2000;
(3)利用$\underset{lim}{n→∞}$$\frac{{S}_{(k-1)k}}{(k-1)k}$=$\underset{lim}{n→∞}$(3+$\frac{6}{k-1}$)=3,$\underset{lim}{n→∞}$$\frac{{S}_{k(k+1)}}{k(k+1)}$=$\underset{lim}{n→∞}$(3+$\frac{6}{k}$)=3及定義即可.

解答 解:(1)將第k個1與第k+1個1前的3記為第k對,
即(1,2)為第1對,共1+1=2項;
(1,2,2,2)為第2對,共1+3=4項;

故前k對共有項數(shù)為2+4+…+2k=k(k+1).
第12個1所在的項之前共有11對,
所以12個1為該數(shù)列的11×(11+1)+1=123(項);
(2)∵前k對所在全部項的和為Sk(k+1)=k+3[k(k+1)-k]=3k2+k,
∴S25×26=S650=3×252+25=1900,
S26×27=S702=3×262+26=2054,
即S651=1901且自第656項到第702項均為3,而2000-1901=99能被3整除,
故存在m=651+33=684,使S684=2000;
(3)結(jié)論:$\underset{lim}{n→∞}$$\frac{{S}_{n}}{n}$=3;
理由如下:對任意的n∈N*,總是存在k∈N*,使得(k-1)k<n<k(k+1),
且有$\frac{{S}_{(k-1)k}}{(k-1)k}$≤$\frac{{S}_{n}}{n}$≤$\frac{{S}_{k(k+1)}}{k(k+1)}$,
又Sk(k+1)=3k2+k,所以$\underset{lim}{n→∞}$$\frac{{S}_{(k-1)k}}{(k-1)k}$=$\underset{lim}{n→∞}$$\frac{3k(k+1)}{(k-1)k}$=$\underset{lim}{n→∞}$(3+$\frac{6}{k-1}$)=3,
同理$\underset{lim}{n→∞}$$\frac{{S}_{k(k+1)}}{k(k+1)}$=$\underset{lim}{n→∞}$(3+$\frac{6}{k}$)=3,
所以$\underset{lim}{n→∞}$$\frac{{S}_{n}}{n}$=3.

點評 本題考查數(shù)列知識的綜合運用,具有一定的探索性,對數(shù)學思維的要求較高,解題時要認真審題,注意等價轉(zhuǎn)化思想的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.閱讀如圖所示的程序框圖,則輸出的s是( 。
A.0B.πC.D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.定義空間兩個向量的一種運算$\overrightarrow{a}$?$\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|sin<$\overrightarrow{a}$,$\overrightarrow$>,則關(guān)于空間向量上述運算的以下結(jié)論中:
①$\overrightarrow{a}$?$\overrightarrow$=$\overrightarrow$?$\overrightarrow{a}$;     
②λ($\overrightarrow{a}$?$\overrightarrow$)=(λ$\overrightarrow{a}$)?$\overrightarrow$;  
③($\overrightarrow{a}$+$\overrightarrow$)?$\overrightarrow{c}$=($\overrightarrow{a}$?$\overrightarrow{c}$)+($\overrightarrow$?$\overrightarrow{c}$);
④若$\overrightarrow{a}$=(x1,y1),$\overrightarrow$=(x2,y2),則$\overrightarrow{a}$?$\overrightarrow$=|x1y2-x2y1|.
其中恒成立的有( 。
A.①④B.①③C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.如圖,△AOB為等腰直角三角形,OA=1,OC為斜邊AB的高,P為線段OC的中點,則$\overrightarrow{AP}$•$\overrightarrow{OP}$=( 。
A.-1B.-$\frac{1}{8}$C.-$\frac{1}{4}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知x,y滿足$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}\right.$,且目標函數(shù)z=2x+y的最大值為M,最小值為m,若M=4m,則實數(shù)a的值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在四棱錐P-ABCD中,底面ABCD是矩形,平面PAD⊥平面ABCD,PD⊥PB,PA=PD.
(Ⅰ)求證:PD⊥平面PAB;
(Ⅱ)設E是棱AB的中點,∠PEC=90°,AB=2,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.為了解某商場旅游鞋的日銷售情況,現(xiàn)抽取部分顧客購鞋的尺碼,將所得數(shù)據(jù)繪成如圖所示頻率分布直方圖,已知圖中從左到右前三組的頻率之比為1:2:3,第二組的頻數(shù)為10.
(1)用頻率估計概率,求尺碼落在區(qū)間(37.5,43.5]概率約是多少?
(2)從尺碼落在區(qū)間(37.5,39.5](43.5,45.5]顧客中任意選取兩人,記在區(qū)間(43.5,45.5]的人數(shù)為X,求X的分布列及數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若z=1+i,則z•$\overline{z}$+|$\overline{z}$|-1=( 。
A.2$\sqrt{2}$-1B.$\sqrt{2}$+1C.$\sqrt{2}$+3D.2$\sqrt{2}$+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.數(shù)列{an},a1=1,a2=1,an+2=(1+sin2$\frac{nπ}{2}$)an+4cos2$\frac{nπ}{2}$,則a9的值為16.

查看答案和解析>>

同步練習冊答案