12.函數(shù)y=$\sqrt{{x}^{2}-2x-3}$+ln(x+1)的定義域?yàn)閇3,+∞).

分析 根據(jù)函數(shù)y的解析式,列出使解析式有意義的不等式組,求出解集即可.

解答 解:函數(shù)y=$\sqrt{{x}^{2}-2x-3}$+ln(x+1),
∴$\left\{\begin{array}{l}{{x}^{2}-2x-3≥0}\\{x+1>0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x≥3或x≤-1}\\{x>-1}\end{array}\right.$,
即x≥3;
∴函數(shù)y的定義域?yàn)閇3,+∞).
故答案為:[3,+∞).

點(diǎn)評(píng) 本題考查了根據(jù)函數(shù)解析式求定義域的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知兩個(gè)平面垂直,下列命題:
①一個(gè)平面內(nèi)的已知直線必垂直于另一個(gè)平面內(nèi)的任意一條直線.
②一個(gè)平面內(nèi)的已知直線必垂直于另一個(gè)平面內(nèi)的無(wú)數(shù)條直線.
③一個(gè)平面內(nèi)的任一條直線必垂直于另一個(gè)平面.
④一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直.
其中正確命題的個(gè)數(shù)是( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知實(shí)數(shù)a1,a2,b1,b2,b3滿足數(shù)列1,a1,a2,9是等差數(shù)列,數(shù)列1,b1,b2,b3,9是等比數(shù)列,則$\frac{_{2}}{{a}_{1}+{a}_{2}}$的值為(  )
A.±$\frac{3}{10}$B.$\frac{3}{10}$C.-$\frac{3}{10}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知直線l:mx-y=1,若直線l與直線x-(m-1)y=2垂直,則m的值為$\frac{1}{2}$,動(dòng)直線l:mx-y=1被圓C:x2-2x+y2-8=0截得的最短弦長(zhǎng)為2$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.為了解某班學(xué)生喜愛(ài)籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:已知在全部50人中隨機(jī)抽取1人抽到喜愛(ài)籃球的學(xué)生的概率為$\frac{3}{5}$.
喜愛(ài)籃球不喜愛(ài)籃球合計(jì)
男生5
女生10
合計(jì)50
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(不用寫(xiě)計(jì)算過(guò)程);
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為喜愛(ài)籃球與性別有關(guān)?說(shuō)明你的理由;
(3)以該班學(xué)生的情況來(lái)估計(jì)全校女生喜愛(ài)籃球的情況,用頻率代替概率.現(xiàn)從全校女生中抽取3人進(jìn)一步調(diào)查,設(shè)抽到喜愛(ài)籃球的女生人數(shù)為ξ,求ξ的分布列與期望.
下面的臨界值表供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知f(x)=x3+x2+ax,a∈R是常數(shù),若曲線y=f(x)有且僅有一條平行于直線y=x的切線,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知圓C:(x-1)2+(y-a)2=16,若直線ax+y-2=0與圓C相交于AB兩點(diǎn),且CA⊥CB,則實(shí)數(shù)a的值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知圓C:(x-2)2+y2=4,點(diǎn)P在直線l:y=x+3上,若圓C上存在兩點(diǎn)A、B使得$\overrightarrow{PA}$=3$\overrightarrow{PB}$,則點(diǎn)P的橫坐標(biāo)的取值范圍是$[{\frac{{-1-\sqrt{7}}}{2},\frac{{-1+\sqrt{7}}}{2}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.某地區(qū)氣象臺(tái)統(tǒng)計(jì),該地區(qū)下雨的概率是$\frac{4}{15}$,刮風(fēng)的概率為$\frac{2}{5}$,既刮風(fēng)又下雨的概率為$\frac{1}{10}$,設(shè)A為下雨,B為刮風(fēng),那么P(B|A)等于$\frac{3}{8}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案