定義在R上的函數(shù)f(x)滿足當(dāng)x>0時,f(x)>1,且對任意的x、y∈R,有f(x+y)=f(x)•f(y),f(1)=2,求解不等式f(3-2x)>4.
考點:抽象函數(shù)及其應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用賦值法,先求出f(0),f(2)的值,再判斷函數(shù)的單調(diào)性,再得到不等式解得即可.
解答: 解:∵設(shè)x=0,y=1得:f(0+1)=f(0)•f(1),
即f(1)=f(0)•f(1)
∵f(1)>1
∴f(0)=1
對x1,x2∈R,x1<x2,有x2-x1>0
∴f(x2)=f(x1+x2-x1)=f(x1)•f(x2-x1)中有f(x2-x1)>1,
由已知可,得當(dāng)x1>0時,f(x1)>1>0
當(dāng)x1=0時,f(x1)=1>0
當(dāng)x1<0時,f(x1)•f(-x1)=f(x1-x1)=f(0)=1
又∵f(-x1)>1
∴0<f(x1)<1
故對于一切x1∈R,有f(x1)>0
∴f(x2)=f(x1)•f(x2-x1)>f(x1),
∴函數(shù)f(x)為增函數(shù).
再令x=y=1,
得f(1+1)=f(1)•f(1),
得f(2)=4,
∵f(3-2x)>4=f(2)
∴3-2x>2
解得x<
1
2

故原不等式的解集為(-∞,
1
2
點評:本題主要考查了抽象函數(shù)表達式反映函數(shù)性質(zhì)及抽象函數(shù)表達式的應(yīng)用,函數(shù)單調(diào)性的定義及其證明,利用函數(shù)性質(zhì)和函數(shù)的單調(diào)性解不等式的方法,轉(zhuǎn)化化歸的思想方法
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某市現(xiàn)有住房am2,預(yù)計以后的10年中,人口的年增長率為r%,要想10年后人均住房面積達到現(xiàn)有的1.5倍,試問這10年中,平均每年新建住房多少m2?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x+2)(1-f(x))=1+f(x),f(2)=1-
3
,則f(2010)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:0<|x-4|≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+(y-a)2=4,點A(1,0).
(1)過A得圓C切線存在時,求a范圍,并求a=2時的切線方程;
(2)設(shè)AM,AN為圓C切線,M,N為切點,|MN|=
4
5
5
時,求MN所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知空間向量 
a
=(2,-y,2),
b
=(4,2,x),|
a
|2+|
b
|2=44,且
a
b
,x,y∈R,求x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)非零向量
a
b
滿足|
a
|=|
b
|=|
a
+
b
|,則
a
a
-
b
的夾角為(  )
A、60°B、30°
C、120°D、150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一天的課表有6節(jié)課,其中上午4節(jié),下午2節(jié),要排語文、數(shù)學(xué)、外語、微機、體育、地理6節(jié)課.要求上午第一節(jié)不排體育,數(shù)學(xué)必須徘在上午,微機必須徘在下午,有
 
種不同的排課方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)的定義域為R+,對任意x、y∈R+,都有f(
x
y
)=f(x)-f(y),且x>1時,f(x)<0,又f(
1
2
)=1.
(1)求證:f(x)在定義域單調(diào)遞減;
(2)解不等式f(x)+f(5-x)≥-2.

查看答案和解析>>

同步練習(xí)冊答案