分析 (1)推導(dǎo)出AB⊥α,則∠AEB是直線AE和平面α所成的角,由此能求出直線AE和平面α所成的角的大。
(2)由AB⊥α,得AB⊥BE,由此利用勾股定理能求出AE.
解答 解:(1)∵在△BCD所在平面α內(nèi)有一點E,BE=7cm.
A為平面α外一點,AB⊥BC,AB⊥BD,BD∩BC=B,且AB=5cm,
∴AB⊥α,∴∠AEB是直線AE和平面α所成的角,
∴tan∠AEB=$\frac{AB}{BE}$=$\frac{5}{7}$,
∴∠AEB=arctan$\frac{5}{7}$,
∴直線AE和平面α所成的角的大小為arctan$\frac{5}{7}$.
(2)∵AB⊥α,BE?α,∴AB⊥BE,
∴AE=$\sqrt{{5}^{2}+{7}^{2}}$=$\sqrt{74}$≈8.6(cm).
點評 本題考查線面角的求法,考查線段長的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
年份 | 2030 | 2035 | 2040 | 2045 | 2050 |
年份代號t | 1 | 2 | 3 | 4 | 5 |
所占比例y | 68 | 65 | 62 | 62 | 61 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com