18.已知命題p:方程x2-mx+1=0無實(shí)數(shù)解;命題q:橢圓$\frac{x^2}{m}+{y^2}=1$焦點(diǎn)在x軸上;若“p∨q”為真,“p∧q”為假,求實(shí)數(shù)m的取值范圍.

分析 命題p:方程x2-mx+1=0無實(shí)數(shù)解,則△<0,解得m范圍;命題q:橢圓$\frac{x^2}{m}+{y^2}=1$焦點(diǎn)在x軸上,則m>1.若“p∨q”為真,“p∧q”為假,則p與q必然一真一假.即可得出.

解答 解:命題p:方程x2-mx+1=0無實(shí)數(shù)解,則△=m2-4<0,解得-2<m<2;
命題q:橢圓$\frac{x^2}{m}+{y^2}=1$焦點(diǎn)在x軸上,則m>1.
若“p∨q”為真,“p∧q”為假,
則p與q必然一真一假.
∴$\left\{\begin{array}{l}{-2<m<2}\\{m≤1}\end{array}\right.$,或$\left\{\begin{array}{l}{m≤-2或m≥2}\\{m>1}\end{array}\right.$,
解得-2<m≤1,或m≥2.
∴實(shí)數(shù)m的取值范圍是-2<m≤1,或m≥2.

點(diǎn)評(píng) 本題考查了復(fù)合命題真假的判定方法、橢圓的性質(zhì)、一元二次方程的實(shí)數(shù)根與判別式的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)集中A={2,4,6},B={1,9,25,49,81,100},下面的對(duì)應(yīng)關(guān)系f能構(gòu)成A到B的映射的是( 。
A.f:x→(2x-1)2B.f:x→(2x-3)C.f:x→(2x-1)D.f:x→(2x-3)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知$f(x)=a•{log_2}({\sqrt{{x^2}+1}+x})+\frac{{b•\sqrt{4-{x^2}}}}{{|{x+3}|-3}}+e$(a,b為常數(shù),e為自然對(duì)數(shù)的底),且f(lg(logπe))=π,則f(lg(lnπ))=2e-π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,且${S_n}={3^n}+k$
(Ⅰ)求k的值及數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)在an與an+1之間插入n個(gè)數(shù),使這n+2個(gè)數(shù)組成公差為dn的等差數(shù)列,求數(shù)列$\{\frac{1}{d_n}\}$的前n項(xiàng)和Tn,并求使$\frac{8}{5}{T_n}+\frac{n}{{5×{3^{n-1}}}}≤\frac{40}{27}$成立的正整數(shù)n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.命題p:關(guān)于x的不等式x2+2ax+4>0,對(duì)一切x∈R恒成立; 命題q:函數(shù)f(x)=(3-2a)x在R上是增函數(shù).若p或q為真,p且q為假,則實(shí)數(shù)a的取值范圍為(-∞,-2]∪[1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若函數(shù)y=a+sinx在區(qū)間[π,2π]上有且只有一個(gè)零點(diǎn),則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x≥0\\ x≥y\\ 2x-y≤1\end{array}\right.$,則${8^x}•{(\frac{1}{4})^{-y}}$的最大值是( 。
A.64B.32C.2$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知復(fù)數(shù)$z=\frac{{{{(1-i)}^2}}}{1+i}$(i為虛數(shù)單位),則復(fù)數(shù)z=( 。
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.為了解某市市民的節(jié)能意識(shí)及行為習(xí)慣等情況,某機(jī)構(gòu)在市區(qū)范圍內(nèi)進(jìn)行了一次有關(guān)市民節(jié)能意識(shí)及行為習(xí)慣的測(cè)試,將所有參加者的筆試成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),繪制成如下的頻數(shù)分布表:
 分?jǐn)?shù)(分?jǐn)?shù)段) 頻數(shù)(人數(shù))
[60,70) 9
[70,80) 19
[80,90) 16
[90,100] 6
 合計(jì) 50
(1)若采用分層抽樣的方法從分?jǐn)?shù)在[60,70)內(nèi)和[90,100]內(nèi)的參加者中抽取5人做問卷調(diào)查,求這5人中分?jǐn)?shù)在[90,100]內(nèi)的人數(shù);
(2)在(1)的條件,從抽取的5人中再隨機(jī)選取3人進(jìn)行跟蹤調(diào)查,記分?jǐn)?shù)在[60,70)內(nèi)的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案