分析 當0<a<2時,利用遞推公式分別求出數列的前8項,得到數列{an}是以5為周期的周期數列,a2015=a5=4=4a,解得a=1,求出S2015的值;當a≥2時,利用遞推公式分別求出數列的前8項,得到數列{an}是以5為周期的周期數列,a2015=a5=2a=4a,解得a=0,不合題意.
解答 解:當0<a<2時,
∵a1=a(a>0),a2=1,
an+2=$\frac{2max\{{a}_{n+1,}2\}}{{a}_{n}}$(n∈N),
∴a3=$\frac{1}{a}$•2max{1,2}=$\frac{4}{a}$>2,
a4=2max{$\frac{4}{a}$,2}=$\frac{8}{a}$,
a5=$\frac{a}{4}$•2max{$\frac{8}{a}$,2}=4,
a6=$\frac{a}{8}$•2max{4,2}=a,
a7=$\frac{1}{4}$•2max{a,2}=1,
a8=$\frac{1}{a}$•2max{1,2}=$\frac{4}{a}$,
…
∴數列{an}是以5為周期的周期數列,
∵2015=403×5,
∴a2015=a5=4=4a,
解得a=1,
∴S2015=403(a+1+$\frac{4}{a}+\frac{8}{a}+4$)=403(1+1+4+8+4)=7254;
當a≥2時,
∵a1=a(a>0),a2=1,
an+2=$\frac{2max\{{a}_{n+1,}2\}}{{a}_{n}}$(n∈N),
∴a3=$\frac{1}{a}$•2max{1,2}=$\frac{4}{a}$<2,
a4=2max{$\frac{4}{a}$,2}=4,
a5=$\frac{a}{4}$•2max{4,2}=2a≥4,
a6=$\frac{1}{4}$•2max{2a,2}=a>2,
a7=$\frac{1}{2a}$•2max{a,2}=1,
a8=$\frac{1}{a}$•2max{1,2}=$\frac{4}{a}$,
…
∴數列{an}是以5為周期的周期數列,
∵2015=403×5,
∴a2015=a5=2a=4a,解得a=0,不合題意.
故答案為:7254.
點評 本題考查數列的遞推式,考查了數列的函數特性,訓練了數列前n項和的求法,關鍵是注意遞推公式和周期數列的合理運用,是中檔題.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2015}$ | B. | ${({\frac{3}{2}})^{\frac{1}{2014}}}$ | C. | $\root{2014}{2}$ | D. | $\root{2015}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com