分析 (1)由數(shù)量積和三角函數(shù)公式化簡(jiǎn)可得f(x)=2sin(2x+$\frac{π}{6}$);
(2)由周期公式可得;
(3)由x∈[-$\frac{π}{6}$,$\frac{π}{4}$]可得三角函數(shù)函數(shù)的值域.
解答 解:(1)∵$\overrightarrow{a}$=(2cosx,-1),$\overrightarrow$=(2sin(x+$\frac{π}{6}$),1),
∴f(x)=$\overrightarrow{a}$•$\overrightarrow$=4cosxsin(x+$\frac{π}{6}$)-1=4cosx($\frac{\sqrt{3}}{2}$sinx+$\frac{1}{2}$cosx)-1
=2$\sqrt{3}$sinxcosx+2cos2x-1=$\sqrt{3}$sin2x+cos2x=2sin(2x+$\frac{π}{6}$)
∴f(x)的解析表達(dá)式為f(x)=2sin(2x+$\frac{π}{6}$);
(2)由(1)可得f(x)的最小正周期T=$\frac{2π}{2}$=π;
(3)∵x∈[-$\frac{π}{6}$,$\frac{π}{4}$],∴2x+$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{2π}{3}$],
∴sin(2x+$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],∴2sin(2x+$\frac{π}{6}$)∈[-1,2],
∴函數(shù)的值域?yàn)椋篬-1,2]
點(diǎn)評(píng) 本題考查兩角和與差的三角函數(shù)公式,涉及數(shù)量積的運(yùn)算,屬基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m≤-$\frac{3}{2}$ | B. | m≤-3 | C. | m≤-$\frac{2}{3}$ | D. | m≤-$\frac{3}{4}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com