20.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y≤3}\\{x-y≥-1}\\{y≥1}\end{array}\right.$,求z=4x+2y的最大值?

分析 畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義求解即可.

解答 解:畫出$\left\{\begin{array}{l}x+y≤3\\ x-y≥-1\\ y≥1\end{array}\right.$的可行域如圖中陰影部分所示,
目標(biāo)函數(shù)z=4x+2y可轉(zhuǎn)化為y=-2x+$\frac{z}{2}$,
作出直線y=-2x并平移,顯然當(dāng)其過點(diǎn)A時(shí)縱截距$\frac{z}{2}$最大.
解方程組得A(2,1),
∴zmax=10.

點(diǎn)評(píng) 本題考查線性規(guī)劃的簡(jiǎn)單應(yīng)用,考查作圖能力,目標(biāo)函數(shù)的幾何意義是解題的關(guān)鍵之一.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知各項(xiàng)皆為正數(shù)的等比數(shù)列{an}(n∈N*),滿足a7=a6+2a5,若存在兩項(xiàng)am、an使得$\sqrt{{a_m}{a_n}}$=4a1,則$\frac{1}{m}$+$\frac{4}{n}$的最小值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)a>0,b>0.若$\sqrt{3}$是3a與3b的等比中項(xiàng),則ab的最大值為(  )
A.8B.4C.1D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.直線x+y-2=0與直線x-y+3=0的位置關(guān)系是( 。
A.平行B.垂直C.相交但不垂直D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若直線l⊥平面α,直線a?α,則l與a的位置關(guān)系是垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知ab≠0,點(diǎn)M(a,b)是圓x2+y2=r2內(nèi)一點(diǎn),直線l的方程是ax+by=r2,則下列結(jié)論正確的是( 。
A.l與圓相交B.l與圓相切C.l與圓相離D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若f(x)=ex+lnx,則此函數(shù)的圖象在點(diǎn)(1,f(1))處的切線方程為(e+1)x-y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,左、右焦點(diǎn)分別為F1、F2
(1)若曲線C1:y2=2px(p>0)的焦點(diǎn)恰是雙曲線的右焦點(diǎn),且交點(diǎn)連線過點(diǎn)F2,則求雙曲線離心率.
(2)過雙曲線右焦點(diǎn)F2且傾斜角為60°的線段F2M與y軸交于M,與雙曲線交于N,已知$\overrightarrow{M{F_2}}=4\overrightarrow{N{F_2}}$,則求該雙曲線的離心率;
(3)若過右焦點(diǎn)F且傾斜角為30°的直線與雙曲線的右支有兩個(gè)交點(diǎn),則求此雙曲線離心率的取值范圍;
(4)若離心率$e∈[\sqrt{2},2]$,令雙曲線的兩條漸近線構(gòu)成的角中,以實(shí)軸為平分線的角為θ,則求θ的取值范圍;
(5)若存在兩條直線x=±m(xù)與雙曲線相交于A,B,C,D,且四邊形ABCD為正方形,則求雙曲線離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.己知向量$\overrightarrow{a}$=(2cosx,-1),$\overrightarrow$=(2sin(x+$\frac{π}{6}$),1),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求f(x)的解析表達(dá)式;
(2)求f(x)的最小正周期;
(3)求f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{4}$]上的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案