1.${({1-\root{3}{x}})^n}$展開式的二項式系數(shù)之和為256,則展開式中x的系數(shù)為-56.

分析 由條件利用二項展開式的通項公式,二項式系數(shù)的性質(zhì),求得展開式中x的系數(shù).

解答 解:由于${({1-\root{3}{x}})^n}$展開式的二項式系數(shù)之和為2n=256,n=8,
故它的展開式的通項公式為 Tr+1=${C}_{8}^{r}$•(-1)r•${x}^{\frac{r}{3}}$,令$\frac{r}{3}$=1求得r=3,可得展開式中x的系數(shù)為-${C}_{8}^{3}$=-56,
故答案為:-56.

點評 本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)a>0,b>0.若$\sqrt{3}$是3a與3b的等比中項,則ab的最大值為( 。
A.8B.4C.1D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若f(x)=ex+lnx,則此函數(shù)的圖象在點(1,f(1))處的切線方程為(e+1)x-y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,左、右焦點分別為F1、F2
(1)若曲線C1:y2=2px(p>0)的焦點恰是雙曲線的右焦點,且交點連線過點F2,則求雙曲線離心率.
(2)過雙曲線右焦點F2且傾斜角為60°的線段F2M與y軸交于M,與雙曲線交于N,已知$\overrightarrow{M{F_2}}=4\overrightarrow{N{F_2}}$,則求該雙曲線的離心率;
(3)若過右焦點F且傾斜角為30°的直線與雙曲線的右支有兩個交點,則求此雙曲線離心率的取值范圍;
(4)若離心率$e∈[\sqrt{2},2]$,令雙曲線的兩條漸近線構(gòu)成的角中,以實軸為平分線的角為θ,則求θ的取值范圍;
(5)若存在兩條直線x=±m(xù)與雙曲線相交于A,B,C,D,且四邊形ABCD為正方形,則求雙曲線離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知全集U=R,集合$A=\left\{{\left.{x\left|{\frac{x+1}{x-2}≤0}\right.}\right\}}\right.$,則集合∁UA={x|x<-1或x≥2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列函數(shù)中,既是偶函數(shù),又在(0,π)上遞增的函數(shù)的個數(shù)是( 。
①y=tan|x|
②y=cos(-x)
③$y=sin({x-\frac{π}{2}})$
④$y=|{cot\frac{x}{2}}|$.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.$\underset{lim}{n→∞}$$\frac{1+2n+3{n}^{2}+…+2004{n}^{2003}}{{n}^{2003}+2{n}^{2002}+…+2003n+2004}$=2004.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.己知向量$\overrightarrow{a}$=(2cosx,-1),$\overrightarrow$=(2sin(x+$\frac{π}{6}$),1),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求f(x)的解析表達(dá)式;
(2)求f(x)的最小正周期;
(3)求f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{4}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.正方體OABC-D′A′B′C′的棱長為a,E,F(xiàn),G,H,I,J分別是棱C′D′,D′A′,A′A,AB,BC,CC′的中點,寫出正六邊形EFGHIJ各頂點的坐際.

查看答案和解析>>

同步練習(xí)冊答案