3.若一個高為4,底面邊長為2的正四棱錐的頂點都在同一個球面上,則該球的表面積為( 。
A.$\frac{81}{4}$πB.16πC.D.$\frac{27}{4}$π

分析 正四棱錐P-ABCD的五個頂點在同一球面上,則其外接球的球心在它的高PO1上,記為O,如圖.求出AO1,OO1,解出球的半徑,求出球的表面積.

解答 解:正四棱錐P-ABCD的外接球的球心在它的高PO1上,
記為O,PO=AO=R,PO1=4,OO1=4-R,
在Rt△AO1O中,AO1=$\sqrt{2}$,由勾股定理R2=2+(4-R)2得R=$\frac{9}{4}$,
∴球的表面積S=$\frac{81}{4}$π
故選:A.

點評 本題考查球的表面積,球的內(nèi)接體問題,解答關(guān)鍵是確定出球心的位置,利用直角三角形列方程式求解球的半徑.需具有良好空間形象能力、計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

13.函數(shù)$y={3^{{x^2}-1}}(-1≤x<0)$的反函數(shù)是( 。
A.$y=-\sqrt{1+{{log}_3}x}(x≥\frac{1}{3})$B.$y=-\sqrt{1+{{log}_3}x}(\frac{1}{3}<x≤1)$
C.$y=\sqrt{1+{{log}_3}x}(\frac{1}{3}<x≤1)$D.$y=\sqrt{1+{{log}_3}x}(x≥\frac{1}{3})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點A(0,-1),且離心率為$\frac{\sqrt{2}}{2}$.
(I)求橢圓E的方程;
(II)經(jīng)過點(1,1),且斜率為k的直線與橢圓E交于不同兩點P,Q(均異于點A),問直線AP與AQ的斜率之和是否為定值,若是,求出這個定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.如果兩個球的體積之比為8:27,那么兩個球的半徑之比為( 。
A.8:27B.2:3C.4:9D.2:9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知直線5x+12y+a=0與圓x2-2x+y2=0相切,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.以直線x=1為準線的拋物線的標準方程是(  )
A.y2=2xB.x2=4yC.y2=-4xD.y2=-4x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知$P:|\frac{4-x}{3}|≤2,q:(x+m-1)(x-m-1)≤0,(m>0)$,若¬p是¬q的必要而不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.如圖所示的程序框圖,輸出的結(jié)果是15.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知數(shù)列{an}的前n項和Sn滿足:Sn=an2+bn,且a1=1,a2=3.
(I)求數(shù)列{an}的通項公式;
(Ⅱ)記bn=2${\;}^{{a}_{n}}$,數(shù)列{bn}的前n項和Tn,求證:Tn≥2.

查看答案和解析>>

同步練習冊答案