14.$\frac{(m-1)!}{{A}_{m-1}^{n-1}•(m-n)!}$=(n-1)。

分析 由排列數(shù)公式,整體代入化簡(jiǎn)可得.

解答 解:化簡(jiǎn)可得$\frac{(m-1)!}{{A}_{m-1}^{n-1}•(m-n)!}$
=$\frac{(m-1)!}{\frac{(m-1)!}{(n-1)!•(m-n)!}•(m-n)!}$
=(n-1)!
故答案為:(n-1)!

點(diǎn)評(píng) 本題考查排列數(shù)公式的化簡(jiǎn)計(jì)算,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)y=$\frac{1}{3}$arcsin$\frac{1}{x}$的定義域?yàn)閧x|x≤-1或 x≥1},值域?yàn)閇-$\frac{π}{6}$,0)∪(0,$\frac{π}{6}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)=3sin(ωx+φ)的部分圖象如圖,則f(x)的單調(diào)遞增區(qū)間為( 。

A.(kπ-$\frac{5}{4}$,kπ-$\frac{1}{4}$),k∈ZB.(2kπ-$\frac{5}{4}$,2kπ-$\frac{1}{4}$),k∈Z
C.(2k-$\frac{5}{4}$,2k-$\frac{1}{4}$),k∈ZD.(k-$\frac{5}{4}$,k-$\frac{1}{4}$),k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖所示,點(diǎn)P從點(diǎn)A處出發(fā),按逆時(shí)針?lè)较蜓剡呴L(zhǎng)為a的正三角形ABC運(yùn)動(dòng)一周,O為ABC的中心,設(shè)點(diǎn)P走過(guò)的路程為x,△OAP的面積為f(x)(當(dāng)A、O、P三點(diǎn)共線時(shí),記面積為0),則函數(shù)f(x)的圖象大致為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}的前n項(xiàng)和Sn滿(mǎn)足3Sn=an+1,n≥1,a1=1,求數(shù)列{an}的通項(xiàng)公式,并求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.求函數(shù)y=34x-1的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,b=acosC+$\frac{\sqrt{3}}{3}$asinC.
(I)求A;
(Ⅱ)若a=2,b+c≥4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.(5x-6y)5的展開(kāi)式中二項(xiàng)式系數(shù)之和是32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖在正方體ABCD-A1B1C1D1中,E是棱CC1的中點(diǎn).
(Ⅰ)證明:AC1∥平面BDE;
(Ⅱ)證明:AC1⊥BD
(Ⅲ)證明:面BDE⊥面ACC1

查看答案和解析>>

同步練習(xí)冊(cè)答案