18.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線的夾角為90°,則雙曲線的離心率為$\sqrt{2}$.

分析 求出漸近線的方程,由題意可得$\frac{a}$•(-$\frac{a}$)=-1,即a=b,求得a,c的關系,由離心率公式計算即可得到所求值.

解答 解:雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的漸近線方程為y=±$\frac{a}$x,
兩條漸近線的夾角為90°,可得$\frac{a}$•(-$\frac{a}$)=-1,
即有a=b,c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{2}$a,
可得e=$\frac{c}{a}$=$\sqrt{2}$.
故答案為:$\sqrt{2}$.

點評 本題考查雙曲線的離心率的求法,注意運用漸近線方程,兩直線垂直的條件:斜率之積為-1,考查運算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.在平面直角坐標系xOy中,鈍角α的終邊與單位圓的交點為A且A點的縱坐標為$\frac{\sqrt{5}}{5}$,銳角β的終邊與單位圓的交點為B且B點的橫坐標為$\frac{2\sqrt{5}}{5}$.
(1)求sin(α+$\frac{π}{4}$);
(2)求tan(2α+β).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.角α的終邊上一點的坐標為$(2sin\frac{2π}{3},2cos\frac{2π}{3})$,則sinα等于(  )
A.$-\frac{1}{2}$B.-1C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.雙曲線$\frac{x^2}{{{m^2}+5}}-\frac{y^2}{{4-{m^2}}}$=1的焦距是( 。
A.4B.2$\sqrt{5}$C.6D.與m有關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.直線l的斜率為-1,在y軸上的截距為1,且與雙曲線3x2-y2=1交于A、B兩點,求證:OA⊥OB(O為坐標原點)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.雙曲線x2-y2=1的離心率是( 。
A.2B.$\sqrt{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知雙曲線E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左,右頂點為A,B,點M在E上,△ABM為等腰三角形,且頂角θ滿足cosθ=-$\frac{1}{3}$,則E的離心率為( 。
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)的定義域為(0,+∞),若$y=\frac{f(x)}{x}$在(0,+∞)上為增函數(shù),則稱f(x)為“一階比增函數(shù)”.
(1)若f(x)=ax2+ax是“一階比增函數(shù)”,求實數(shù)a的取值范圍;
(2)若f(x)是“一階比增函數(shù)”,求證:對任意x1,x2∈(0,+∞),總有f(x1)+f(x2)<f(x1+x2);
(3)若f(x)是“一階比增函數(shù)”,且f(x)有零點,求證:關于x的不等式f(x)>2015有解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知-1,2,x成等比數(shù)列,則x=-4.

查看答案和解析>>

同步練習冊答案