分析 (1)直接利用類加法求數(shù)列的通項公式;
(2)把數(shù)列{an}的通項公式代入bn=$\frac{n}{{a}_{n}}$,然后利用錯位相減法求和.
解答 解:(1)由an+1-an=2n,得
an=[(an-an-1)+(an-1-an-2)+…+(a2-a1)]+a1
=$({2}^{n-1}+{2}^{n-2}+…+{2}^{1})+2=\frac{2(1-{2}^{n-1})}{1-2}+2={2}^{n}$,
又a1=2,
∴數(shù)列{an}的通項公式為${a}_{n}={2}^{n}$;
(2)由bn=$\frac{n}{{a}_{n}}$=$\frac{n}{{2}^{n}}$,
知${S}_{n}=\frac{1}{{2}^{1}}+\frac{2}{{2}^{2}}+…+\frac{n}{{2}^{n}}$,
$\frac{1}{2}{S}_{n}=\frac{1}{{2}^{2}}+\frac{2}{{2}^{3}}+…+\frac{n}{{2}^{n+1}}$,
兩式作差得:$\frac{1}{2}{S}_{n}=\frac{1}{2}+(\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}})-\frac{n}{{2}^{n+1}}$
=$\frac{1}{2}+\frac{\frac{1}{4}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}-\frac{n}{{2}^{n+1}}$=$1-\frac{n+2}{{2}^{n+1}}$.
∴${S}_{n}=2-\frac{n+2}{{2}^{n}}$.
點評 本題考查數(shù)列遞推式,訓練了類加法求數(shù)列的通項公式,訓練了錯位相減法求數(shù)列的和,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-1]∪(1,3] | B. | [-1,1)∪[3,+∞) | C. | (-∞,-1]∪[3,+∞) | D. | [-1,1)∪(1,3] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2014 | B. | 2015 | C. | 2016 | D. | 2017 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 16 | B. | 9 | C. | 4 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{9}$ | B. | $\frac{5}{9}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com