3.在平面直角坐標(biāo)系xOy中,點P(x,y)是橢圓$\frac{x^2}{4}+{y^2}=1$上的一個動點,求z=3x+8y的取值范圍.

分析 利用橢圓的參數(shù)方程及三角函數(shù)的性質(zhì)求解.

解答 解:∵點P(x,y)是橢圓$\frac{x^2}{4}+{y^2}=1$上的一個動點,
∴設(shè)橢圓的參數(shù)方程為$\left\{\begin{array}{l}x=2cosθ\\ y=sinθ\end{array}\right.$(θ為參數(shù))
則z=3x+8y=6cosθ+8sinθ=$10(\frac{3}{5}cosθ+\frac{4}{5}sinθ)$=10sin(θ+ϕ0
∵θ∈[0,2π),
∴z∈[-10,10],即z=3x+8y的取值范圍是[-10,10].

點評 本題考查代數(shù)式的取值范圍的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意橢圓的參數(shù)方程的求法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)$f(x)=\frac{1}{{{2^x}+\sqrt{2}}}$,利用推導(dǎo)等差數(shù)列前n項和的方法--倒序相加法,求f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值為3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知直線l的參數(shù)方程$\left\{\begin{array}{l}x=t\\ y=2t-1\end{array}\right.({t為參數(shù)})$和圓C的極坐標(biāo)方程ρ=2$\sqrt{2}cos({θ+\frac{π}{4}})$,則直線l與圓C相交所得的弦長為$\frac{2\sqrt{30}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列問題中,應(yīng)采用哪種抽樣方法( 。
①有甲廠生產(chǎn)的30個籃球,其中一箱21個,另一箱9個,抽取10個入樣;
②有30個籃球,其中甲廠生產(chǎn)的有21個,乙廠生產(chǎn)的有9個,抽取10個入樣;
③有甲廠生產(chǎn)的300個籃球,抽取10個入樣;
④有甲廠生產(chǎn)的300 個籃球,抽取50個入樣.
A.分層抽樣、分層抽樣、抽簽法、系統(tǒng)抽樣
B.分層抽樣、分層抽樣、隨機(jī)數(shù)法、系統(tǒng)抽樣
C.抽簽法、分層抽樣、隨機(jī)數(shù)法、系統(tǒng)抽樣
D.抽簽法、分層抽樣、系統(tǒng)抽樣、隨機(jī)數(shù)法

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知兩直線l1與l2的方向向量分別為$\overrightarrow{{v}_{1}}$=(1,-3,-2),$\overrightarrow{{v}_{2}}$=(-3,9,6),則l1與l2的位置關(guān)系為l1∥l2或重合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知點M(4,-1),點P是直線l:y=2x+3上的任一點,則|PM|最小值為$\frac{{12\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求${(\frac{16}{81})^{-\frac{3}{4}}}+{log_3}\frac{5}{4}+{log_3}\frac{4}{5}+{π^0}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.△ABC的內(nèi)角A、B、C的對邊分別為a,b,c,且a:b:c=$\sqrt{13}$:4:3,設(shè)$\overrightarrow{m}$=$\overrightarrow{AB}$cosA,$\overrightarrow{n}$=$\overrightarrow{AC}$sinA,又△ABC的面積為S,則$\overrightarrow{m}$•$\overrightarrow{n}$=(  )
A.$\frac{\sqrt{13}}{2}$SB.$\frac{3}{2}$SC.SD.$\frac{1}{2}$S

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,求證:S△ABC=$\frac{{a}^{2}}{2(cotB+cotC)}$.

查看答案和解析>>

同步練習(xí)冊答案