11.求和:Sn=1×$\frac{1}{2}$$+3×\frac{1}{4}+5×\frac{1}{8}+$…+$\frac{2n-1}{{2}^{n}}$.

分析 利用錯位相減法計算即得結(jié)論.

解答 解:∵Sn=1×$\frac{1}{2}$$+3×\frac{1}{4}+5×\frac{1}{8}+$…+$\frac{2n-1}{{2}^{n}}$,
∴$\frac{1}{2}$Sn=1×$\frac{1}{4}$+3×$\frac{1}{8}$+…+(2n-3)×$\frac{1}{{2}^{n}}$+(2n-1)×$\frac{1}{{2}^{n+1}}$,
錯位相減得:$\frac{1}{2}$Sn=$\frac{1}{2}$+2($\frac{1}{4}$+$\frac{1}{8}$+…+$\frac{1}{{2}^{n}}$)-(2n-1)×$\frac{1}{{2}^{n+1}}$,
∴Sn=1+1+$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$+…+$\frac{1}{{2}^{n-2}}$-(2n-1)$\frac{1}{{2}^{n}}$
=1+$\frac{1-\frac{1}{{2}^{n-1}}}{1-\frac{1}{2}}$-(2n-1)$\frac{1}{{2}^{n}}$
=3-$\frac{2n+3}{{2}^{n}}$.

點評 本題考查數(shù)列的求和,利用錯位相減法是解決本題的關鍵,注意解題方法的積累,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.條件P:|x-4|>1,條件Q:$\frac{1}{3-x}$>1,則¬P是¬Q的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知a∈R,函數(shù)f(x)=x|x-2a|.
(1)當a=1時,寫出函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)當a>2時,求函數(shù)y=f(x)在區(qū)間[1,2]上的最小值;
(3)設a≠0,若函數(shù)y=f(x)在(m,n)上既有最大值又有最小值,請分別求出m、n的取值范圍.(用a表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.如果tanα=3,那么$\frac{4sinα-3cosα}{5cosα+3sinα}$=$\frac{9}{14}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知指數(shù)函數(shù)f(x)=ax(a>0,且a≠1)的圖象過點(-2,$\frac{9}{4}$).
(1)求函數(shù)的解析式:
(2)求f(0),f(1),f(-3),f(-$\frac{1}{2}$):
(3)作出函數(shù)的圖象:
(4)指出函數(shù)的單調(diào)區(qū)間和奇偶性:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.求函數(shù)y=$\sqrt{\frac{1}{2}cosx}$的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.(1)已知sin(x+$\frac{7π}{6}$)=-$\frac{1}{4}$,求sin($\frac{7π}{6}$+x)+cos2($\frac{23π}{6}-x$)的值;
(2)已知cos(α+β)+1=0,求證:sin(2α+β)+sinβ=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.不等式23x-1>$\frac{\sqrt{2}}{2}$的解集是( 。
A.(1,+∞)B.($\frac{1}{6}$,+∞)C.(-∞,1)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源:2015-2016學年河北石家莊一中高一下期末數(shù)學(文)試卷(解析版) 題型:填空題

定義在上的函數(shù)滿足時,__________.

查看答案和解析>>

同步練習冊答案