11.當(dāng)|$\overrightarrow{a}$$•\overrightarrow$|=|$\overrightarrow{a}$||$\overrightarrow$|,則$\overrightarrow{a}$,$\overrightarrow$的位置關(guān)系是$\overrightarrow{a}$∥$\overrightarrow$.

分析 代入夾角公式計(jì)算向量的夾角,得出結(jié)論.

解答 解:∵|$\overrightarrow{a}$$•\overrightarrow$|=|$\overrightarrow{a}$||$\overrightarrow$|,∴$\overrightarrow{a}$$•\overrightarrow$=±|$\overrightarrow{a}$||$\overrightarrow$|,∴cos<$\overrightarrow{a},\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$=±1.
∴<$\overrightarrow{a},\overrightarrow$>=0或<$\overrightarrow{a},\overrightarrow$>=π.∴$\overrightarrow{a}$∥$\overrightarrow$.
故答案為$\overrightarrow{a}$∥$\overrightarrow$.

點(diǎn)評(píng) 本題考查了平面向量的夾角計(jì)算,向量的位置關(guān)系判斷,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)向量$\overrightarrow a,\overrightarrow b$不平行,向量$\overrightarrow a+λ\overrightarrow b$與$3\overrightarrow a+2\overrightarrow b$平行,則實(shí)數(shù)λ=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.過(guò)函數(shù)y=$\sqrt{x}$+$\frac{1}{x}$圖象上的點(diǎn)(1,2)作函數(shù)圖象的切線,則切線方程為x+2y-5=0或0.1x-y+1.9=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知正數(shù)x,y滿足x+y=1,則x-y的取值范圍為(-1,1),$\frac{1}{x}+\frac{x}{y}$的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.三棱柱ABC-A1B1C1的所有棱長(zhǎng)郡相等,∠A1AB=∠A1AC=120°,則AB1與BC1所成角的余弦值為(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若向量$\overrightarrow{a}$、$\overrightarrow$,滿足|$\overrightarrow{a}$|=1、|$\overrightarrow$|=$\sqrt{2}$,$\overrightarrow{a}$⊥($\overrightarrow{a}+\overrightarrow$),則$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.$\frac{π}{2}$B.$\frac{2π}{3}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.函數(shù)f(x)=sin2x-sin2(x-$\frac{π}{6}$),x∈R在區(qū)間[-$\frac{π}{3}$,$\frac{π}{4}$]上的值域[-$\frac{1}{2}$,$\frac{\sqrt{3}}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,則下列結(jié)論正確的是( 。
A.若m∥α,n∥β且α⊥β,則m⊥nB.若m∥α,n∥β且α⊥β,則m∥n
C.若m⊥α,n∥m且α∥β,則m⊥nD.若m∥α,n∥β且α∥β,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖所示,四邊形ABCD是平行四邊形,四邊形ABDE是矩形.
(1)找出與向量$\overrightarrow{AB}$相等的向量(自身除外);
(2)找出與向量$\overrightarrow{AB}$共線的向量(自身除外).

查看答案和解析>>

同步練習(xí)冊(cè)答案