3.已知數(shù)列{an}為等差數(shù)列,且a4=9,a9=-6.
(1)求通項(xiàng)an
(2)求a12的值.

分析 (1)利用等差數(shù)列通項(xiàng)公式列出方程組,求出首項(xiàng)與公差,由此能求出通項(xiàng)an
(2)由通項(xiàng)通項(xiàng)an,能求出a12的值.

解答 解:(1)∵數(shù)列{an}為等差數(shù)列,且a4=9,a9=-6,
∴$\left\{\begin{array}{l}{{a}_{1}+3d=9}\\{{a}_{1}+8d=-6}\end{array}\right.$,解得a1=18,d=-3,
∴通項(xiàng)an=18+(n-1)×(-3)=21-3n.
(2)a12=21-3×12=-15.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式和第12項(xiàng)和求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.sin2(π+α)-cos(π-α)•cosα+1=( 。
A.2B.1C.2sin2αD.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知sin(3π+α)=lg$\frac{1}{\root{3}{10}}$,求$\frac{cos(π+α)}{cosα[cos(π-α)-1]}$+$\frac{cos(α-2π)}{cosαcos(π-α)+cos(-α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)=(x-a)2+(ex-a)2(a∈R),若存在x0∈R,使得f(x0)≤$\frac{1}{2}$成立,則實(shí)數(shù)a的值為( 。
A.$\frac{1}{3}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在△ABC中,a2+b2+c2=2$\sqrt{3}$bcsinA,則△ABC的形狀是( 。
A.直角三角形B.銳角三角形C.鈍角三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)a,b∈R,定義:M(a,b)=$\frac{a+b+|a-b|}{2}$,m(a,b)=$\frac{a+b-|a-b|}{2}$.下列式子錯(cuò)誤的是( 。
A.M(a,b)+m(a,b)=a+bB.m(|a+b|,|a-b|)=|a|-|b|C.M(|a+b|,|a-b|)=|a|+|b|D.m(M(a,b),m(a,b))=m(a,b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.某班50名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)吭?3秒與18秒之間,大于或等于14秒的為良好,由測(cè)試結(jié)果得到的頻率分布直方圖如圖,則該班百米測(cè)試中成績(jī)良好的人數(shù)有人47.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)$f(x)={log_9}({9^x}+1)+kx(k∈R)$是偶函數(shù).
(1)求k的值;
(2)若函數(shù)y=f(x)的圖象與直線(xiàn)$y=\frac{1}{2}x+b$沒(méi)有交點(diǎn),求b的取值范圍.
(3)設(shè)$h(x)={log_9}(a•{3^x}-\frac{4}{3}a)$,若函數(shù)f(x)與h(x)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.化簡(jiǎn):$\overrightarrow{AB}$+$\overrightarrow{OA}$-$\overrightarrow{OB}$=( 。
A.$\overrightarrow{0}$B.$\overrightarrow{BA}$C.2$\overrightarrow{AB}$D.-2$\overrightarrow{AB}$

查看答案和解析>>

同步練習(xí)冊(cè)答案