5.已知函數(shù)$f(x)={log_9}({9^x}+1)+kx(k∈R)$是偶函數(shù).
(1)求k的值;
(2)若函數(shù)y=f(x)的圖象與直線$y=\frac{1}{2}x+b$沒有交點(diǎn),求b的取值范圍.
(3)設(shè)$h(x)={log_9}(a•{3^x}-\frac{4}{3}a)$,若函數(shù)f(x)與h(x)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.

分析 (1)根據(jù)函數(shù)的奇偶性求出k的值即可;
(2)問題轉(zhuǎn)化為g(x)=log9(9x+1)-x的圖象和直線y=b無交點(diǎn),求出g(x)的最小值,從而求出b的范圍;
(3)問題轉(zhuǎn)化為方程3x+$\frac{1}{{3}^{x}}$-$\frac{4}{3}$a有且只有一個(gè)實(shí)數(shù)根,通過換元結(jié)合二次函數(shù)的性質(zhì)求出a的范圍即可.

解答 解:(1)因?yàn)閥=f(x)為偶函數(shù),所以?x∈R,f(-x)=f(x),
即log9(9-x+1)-kx=log9(9x+1)+kx對(duì)于?x∈R恒成立.
即2kx=${log}_{9}^{{(9}^{-x}+1)}$-${log}_{9}^{{(9}^{x}+1)}$=${log}_{9}^{\frac{{9}^{x}+1}{{9}^{x}}}$-${log}_{9}^{{(9}^{x}+1)}$=-x恒成立
即(2k+1)x=0恒成立,而x不恒為零,所以k=-$\frac{1}{2}$.
(2)由題意知方程${log}_{9}^{{(9}^{x}+1)}$-$\frac{1}{2}$x=$\frac{1}{2}$x+b即方程log9(9x+1)-x=b無解.
令g(x)=log9(9x+1)-x,則函數(shù)y=g(x)的圖象與直線y=b無交點(diǎn).
因?yàn)間(x)=${log}_{9}^{\frac{{9}^{x}+1}{{9}^{x}}}$=${log}_{9}^{(1+\frac{1}{{9}^{x}})}$,
任取x1、x2∈R,且x1<x2,則0<${9}^{{x}_{1}}$<${9}^{{x}_{2}}$,從而$\frac{1}{{9}^{{x}_{1}}}$>$\frac{1}{{9}^{{x}_{2}}}$.
于是${log}_{9}^{(1+\frac{1}{{9}^{{x}_{1}}})}$>${log}_{9}^{(1+\frac{1}{{9}^{{x}_{2}}})}$,即g(x1)>g(x2),
所以g(x)在(-∞,+∞)是單調(diào)減函數(shù).
因?yàn)?+$\frac{1}{{9}^{x}}$>1,所以g(x)=${log}_{9}^{(1+\frac{1}{{9}^{x}})}$>0.
所以b的取值范圍是(-∞,0].
(3)由題意知方程3x+$\frac{1}{{3}^{x}}$-$\frac{4}{3}$a有且只有一個(gè)實(shí)數(shù)根.
令3x=t>0,則關(guān)于t的方程(a-1)t2-$\frac{4}{3}$at-1=0(記為(*))
有且只有一個(gè)正根.
若a=1,則t=-$\frac{3}{4}$,不合,舍去;若a≠1,則方程(*)的兩根異號(hào)或有兩相等正根.
由△=0⇒a=$\frac{3}{4}$或-3;但a=$\frac{3}{4}$⇒t=-$\frac{1}{2}$,不合,舍去;而a=-3⇒t=$\frac{1}{2}$;
方程(*)的兩根異號(hào)?(a-1)•(-1)<0,即-a+1<0,解得:a>1.
綜上所述,實(shí)數(shù)a的取值范圍{-3}∪(1,+∞).

點(diǎn)評(píng) 本題考查了函數(shù)的奇偶性問題,考查函數(shù)的單調(diào)性以及最值問題,考查轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知f(x)的定義域是[0,2].
(1)求y=f(lgx)的定義域;
(2)求y=f(x+1)+f(x-1)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}為等差數(shù)列,且a4=9,a9=-6.
(1)求通項(xiàng)an;
(2)求a12的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某家具廠生產(chǎn)一種課桌,每張課桌的成本為50元,出廠單價(jià)定為80元,該廠為鼓勵(lì)銷售商多訂購,決定一次訂購量超過100張時(shí),每超過一張,這批訂購的全部課桌出廠單價(jià)降低0.02元.根據(jù)市場調(diào)查,銷售商一次訂購量不會(huì)超過1000張.
(Ⅰ)設(shè)一次訂購量為x張,課桌的實(shí)際出廠單價(jià)為P元,求P關(guān)于x的函數(shù)關(guān)系式P(x);
(Ⅱ)當(dāng)一次訂購量x為多少時(shí),該家具廠這次銷售課桌所獲得的利潤f(x)最大?其最大利潤是多少元?(家具廠售出一張課桌的利潤=實(shí)際出廠單價(jià)-成本).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在棱長為3的正方體內(nèi)任取一個(gè)點(diǎn),則這個(gè)點(diǎn)到各面的距離都大于1的概率為$\frac{1}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.通錫蘇學(xué)大教育欲舉辦主題為“我環(huán)保、我行動(dòng)”的環(huán)保知識(shí)競猜活動(dòng).某校區(qū)準(zhǔn)備從甲、乙、丙、丁四名同學(xué)中隨機(jī)的選取兩名代表參加比賽,則甲、乙兩人至少有一人被選中的概率為$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在Rt△ABC中,∠C是直角,CA=4,CB=3,△ABC的內(nèi)切圓交CA,CB于點(diǎn)D,E,點(diǎn)P是圖中陰影區(qū)域內(nèi)的一點(diǎn)(不包含邊界).若$\overrightarrow{CP}$=x$\overrightarrow{CD}$+y$\overrightarrow{CE}$,則x+y的值可以是( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.為了解我市高二年級(jí)進(jìn)行的一次考試中數(shù)學(xué)成績的分布狀況,有關(guān)部門隨機(jī)抽取了一個(gè)樣本,對(duì)數(shù)學(xué)成績進(jìn)行分組統(tǒng)計(jì)分析如下表:
(1)求出表中m、n、M、N的值,并根據(jù)表中所給數(shù)據(jù)在下面給出的坐標(biāo)系中畫出頻率分布直方圖:
分組頻數(shù)頻率
[0,30) 3 0.03
[30,60) 3 0.03
[60,90) 37 0.37
[90,120) m n
[120,150) 15 0.15
合計(jì)MN
(2)若我市參加本次考試的學(xué)生有18000人,試估計(jì)這次測試中我市學(xué)生成績?cè)?0分以上的人數(shù);
(3)為了深入分析學(xué)生的成績,有關(guān)部門擬從分?jǐn)?shù)不超過60的學(xué)生中選取2人進(jìn)行進(jìn)一步分析,求被選中2人分?jǐn)?shù)均不超過30分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若函數(shù)f(x)=lg(mx+$\sqrt{{x}^{2}+1}$)為奇函數(shù),則m=( 。
A.-1B.1C.-1或1D.0

查看答案和解析>>

同步練習(xí)冊(cè)答案