【題目】過直線上的點作橢圓的切線,切點分別為,聯(lián)結

(1)當點在直線上運動時,證明直線恒過定點

(2)當時,定點平分線段

【答案】(1)見解析;(2)見解析

【解析】

.則橢圓過點的切線方程分別為.因為兩切線都過點,所以,

這表明點均在直線

上.由兩點決定一條直線知,式①就是直線的方程,其中滿足直線的方程.

(1)當在直線上運動時,可理解為取遍一切實數(shù),相應的.代

入式①消去

對一切恒成立.

變形可得對一切恒成立.

由此得直線恒過定點

(2)當時,由式②知.解得

代入式②得的方程為

將此方程與橢圓方程聯(lián)立,消去

由此得截橢圓所得弦的中點橫坐標恰好為點的橫坐標,即

代入式③可得弦中點縱坐標恰好為點的縱坐標,即

這就是說,點平分線段

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求曲線在點處的切線方程;

(Ⅱ)若函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;

(Ⅲ)設函數(shù),其中.證明:的圖象在圖象的下方.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知元集合的一些子集滿足:每個子集至少含2個元素,每兩個不同子集的交集至多含2個元素,記這些子集的元素個數(shù)的立方和為.問:是否存在不小于3的正整數(shù),使的最大值等于2009的方冪?說明你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】目前,新冠病毒引發(fā)的肺炎疫情在全球肆虐,為了解新冠肺炎傳播途徑,采取有效防控措施,某醫(yī)院組織專家統(tǒng)計了該地區(qū)500名患者新冠病毒潛伏期的相關信息,數(shù)據(jù)經(jīng)過匯總整理得到如圖所示的頻率分布直方圖(用頻率作為概率).潛伏期低于平均數(shù)的患者,稱為短潛伏者,潛伏期不低于平均數(shù)的患者,稱為長潛伏者”.

1)求這500名患者潛伏期的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表),并計算出這500名患者中長潛伏者的人數(shù);

2)為研究潛伏期與患者年齡的關系,以潛伏期是否高于平均數(shù)為標準進行分層抽樣,從上述500名患者中抽取300人,得到如下列聯(lián)表,請將列聯(lián)表補充完整,并根據(jù)列聯(lián)表判斷是否有97.5%的把握認為潛伏期長短與患者年齡有關;

短潛伏者

長潛伏者

合計

60歲及以上

90

60歲以下

140

合計

300

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】個人在某個節(jié)日期間互通電話問候,已知其中每個人至多打通了三個朋友家的電話,任何兩個人之間至多進行一次通話,且任何三個人中至少有兩人,其中一個人打通了另一個人家里的電話,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義一個希望結合”()簡稱如下:為一個非空集合,它滿足條件,則。試問:在集合中,一共有多少個希望子集合?請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個半徑為r的小球與一個半徑為R的大球在一個內(nèi)壁棱長為l的正四面體容器內(nèi)向各個方向自由運動。,則該小球永遠不可能接觸到的容器內(nèi)壁的面積是_________。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市環(huán)保部門為了讓全市居民認識到冬天燒煤取暖對空氣數(shù)值的影響,進而喚醒全市人民的環(huán)保節(jié)能意識.對該市取暖季燒煤天數(shù)與空氣數(shù)值不合格的天數(shù)進行統(tǒng)計分析,得出表數(shù)據(jù):

(天)

(天)

1)以統(tǒng)計數(shù)據(jù)為依據(jù),求出關于的線性回歸方程;

2)根據(jù)(1)求出的線性回歸方程,預測該市燒煤取暖的天數(shù)為時空氣數(shù)值不合格的天數(shù).

參考公式:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中裝著10個外形完全相同的小球,其中標有數(shù)字1的小球有1個,標有數(shù)字2的小球有2個,標有數(shù)字3的小球有3個,標有數(shù)字4的小球有4.

現(xiàn)從袋中任取3個小球,按3個小球上最大數(shù)字的8倍計分,每個小球被取出的可能性都相等,用表示取出的三個小球上的最大數(shù)字,求:

1)取出的3個小球上的數(shù)字互不相同的概率;

2)隨機變量的分布列;

3)計算介于20分到40分之間的概率.

查看答案和解析>>

同步練習冊答案