分析 由橢圓$\sqrt{(x-2)^{2}+(y-2)^{2}}$=$\frac{|3x+4y+8|}{25}$變形為:$\frac{\sqrt{(x-2)^{2}+(y-2)^{2}}}{\frac{|3x+4y+8|}{\sqrt{{3}^{2}+{4}^{2}}}}$=$\frac{1}{5}$,利用橢圓的第二定義即可得出.
解答 解:由橢圓$\sqrt{(x-2)^{2}+(y-2)^{2}}$=$\frac{|3x+4y+8|}{25}$變形為:$\frac{\sqrt{(x-2)^{2}+(y-2)^{2}}}{\frac{|3x+4y+8|}{\sqrt{{3}^{2}+{4}^{2}}}}$=$\frac{1}{5}$,
表示的是橢圓上的點P(x,y)到定點(焦點)(2,2)的距離與到定直線3x+4y+8=0(準(zhǔn)線)的距離之比為定值$\frac{1}{5}$,
∴此橢圓的離心率e=$\frac{1}{5}$.
故答案為:$\frac{1}{5}$.
點評 本題考查了橢圓的第二定義,考查了變形能力、推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 20 | C. | 28 | D. | 36 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com