【題目】為了預(yù)防流感,某學(xué)校對教室用藥熏消毒法進行消毒.已知藥物釋放過程中,室內(nèi)每立方米空氣的含藥量(毫克)與時間(小時)成正比.藥物釋放完畢后,與的函數(shù)關(guān)系式為(為常數(shù)),如圖所示,根據(jù)圖中提供的信息,回答下列問題:
(1)求從藥物釋放開始,每立方米空氣中的含藥量(毫克)與時間(小時)之間的函數(shù)關(guān)系式;
(2)據(jù)測定,當(dāng)空氣中每立方米空氣的含藥量降到0.25毫克以下時,學(xué)生方可進教室,那從藥物釋放開始,至少需要經(jīng)過多少小時后,學(xué)生才能回到進教室?
【答案】(Ⅰ)
(Ⅱ)至少需要經(jīng)過0.6小時后學(xué)生才能回到教室
【解析】
試題(1)利用函數(shù)圖象,借助于待定系數(shù)法,求出函數(shù)解析法,進而發(fā)現(xiàn)函數(shù)性質(zhì);
(2)根據(jù)函數(shù)解析式,挖掘其性質(zhì)解決實際問題.
解:(1)從圖中可以看出線段的端點分別為當(dāng)時,因為室內(nèi)每立方米空氣的含藥量(毫克)與時間(小時)成正比.設(shè)圖象過點則
點也在上,故,當(dāng)時,;
故
(2)顯然,設(shè),
得,,
故從藥物釋放開始,至少需要經(jīng)過0.6小時后,學(xué)生才能回到進教室.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩個定點,, 動點滿足,設(shè)動點的軌跡為曲線,直線:.
(1)求曲線的軌跡方程;
(2)若與曲線交于不同的、兩點,且 (為坐標原點),求直線的斜率;
(3)若,是直線上的動點,過作曲線的兩條切線、,切點為、,探究:直線是否過定點,若存在定點請寫出坐標,若不存在則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,正方形所在平面與正所在平面垂直,分別為的中點,在棱上.
(1)證明:平面.
(2)已知,點到的距離為,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在正數(shù)x,y,使得,其中e為自然對數(shù)的底數(shù),則實數(shù)的取值范圍是_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點在雙曲線(,)上,且雙曲線的一條漸近線的方程是.
(1)求雙曲線的方程;
(2)若過點且斜率為的直線與雙曲線有兩個不同的交點,求實數(shù)的取值范圍;
(3)設(shè)(2)中直線與雙曲線交于兩個不同的點,若以線段為直徑的圓經(jīng)過坐標原點,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù),且),且數(shù)列是首項為,公差為的等差數(shù)列.
(1)求證:數(shù)列是等比數(shù)列;
(2)若,當(dāng)時,求數(shù)列的前項和的最小值;
(3)若,問是否存在實數(shù),使得是遞增數(shù)列?若存在,求出的范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校興趣小組在如圖所示的矩形區(qū)域內(nèi)舉行機器人攔截挑戰(zhàn)賽,在處按方向釋放機器人甲,同時在處按某方向釋放機器人乙,設(shè)機器人乙在處成功攔截機器人甲,若點在矩形區(qū)城內(nèi)(包含邊界),則挑戰(zhàn)成功,否則挑戰(zhàn)失敗,已知米,為中點,機器人乙的速度是機器人甲的速度的2倍,比賽中兩機器人均按勻速直線遠動方式行進.
(1)如圖建系,求的軌跡方程;
(2)記與的夾角為,,如何設(shè)計的長度,才能確保無論的值為多少,總可以通過設(shè)置機器人乙的釋放角度使之挑戰(zhàn)成功?
(3)若與的夾角為,足夠長,則如何設(shè)置機器人乙的釋放角度,才能挑戰(zhàn)成功?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】類似于平面直角坐標系,我們可以定義平面斜坐標系:設(shè)數(shù)軸的交點為,與軸正方向同向的單位向量分別是,且與的夾角為,其中。由平面向量基本定理,對于平面內(nèi)的向量,存在唯一有序?qū)崝?shù)對,使得,把叫做點在斜坐標系中的坐標,也叫做向量在斜坐標系中的坐標。在平面斜坐標系內(nèi),直線的方向向量、法向量、點方向式方程、一般式方程等概念與平面直角坐標系內(nèi)相應(yīng)概念以相同方式定義,如時,方程表示斜坐標系內(nèi)一條過點(2,1),且方向向量為(4,-5)的直線。
(1)若, ,且與的夾角為銳角,求實數(shù)m的取值范圍;
(2)若,已知點和直線 ①求l的一個法向量;②求點A到直線l的距離。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com